Pointers and Lists

CSE 326
Data Structures
Unit 2

Reading: Section 3.2 The List ADT

Records and Pointers

- Record (also called a struct)
, Group data together that are related
x : complex pointer
real_part : real
imaginary_part : real
, To access the fields we use "dot" notation.
X.real_part
X.imaginary_part

Basic Types and Arrays

- Basic Types
, integer, real (floating point), boolean (0,1), character
- Arrays
, A[0..99] : integer array

Record Definition

- Record definition creates a new type Definition
record complex : (real_part : real,
imaginary_part : real
)
Use in a declaration
X : complex

Pointer

- A pointer is a reference to a variable or record (or object in Java world).

- In C, if X is of type pointer to Y then * X is of type Y

Simple Linked List

- A linked list
, Group data together in a flexible, dynamic way.
, We'll describe several list ADTs later.

record node : (
data : integer,
next : node pointer
)

Creating a Record

- We use the "new" operator to create a record.

```
P : pointer to blob;
\({ }_{P} \square\) (null pointer)
```

P := new blob;

Sparse Polynomials

- $10+4 x^{2}+20 x^{40}+8 x^{86}$

Exponents in Increasing order

record poly : $($	
exp	
exp : integer,	
coef : integer,	
next : poly pointer	
coef	
next	

Identically Zero Polynomial

$$
\begin{aligned}
& \mathrm{P} \square \\
& \quad \text { null pointer } \\
& \mathrm{P} \square \\
& \square \\
& \hline
\end{aligned}
$$

Addition of Polynomials

$$
10+4 x^{2}+20 x^{40}+8 x^{86}
$$

$7 x+10 x^{2}-8 x^{86}$

Recursive Addition

```
Add(P, Q : poly pointer): poly pointer{
R : poly pointer
    case {
        P = null : R := Q ;
        Q = null : R := P ;
        P.exp < Q.exp : R := P
        R.next := Add(P.next,Q);
        P.exp > Q.exp : R := Q
        R.next := Add(P,Q.next)
            P.exp = Q.exp : R := P ;
                        R.coef := P.coef + Q.coef ;
                        R.next := Add(P.next,Q.next);
        }
        return R
}
```

Example (first call)

During the Recursive Call

Add

Represent return values

The Recursive Call

After the Recursive Call

The final picture

17

Unneeded nodes to Garbage

- How would you force the unneeded node to be garbage in the code on slide 11?
- Suggestions?

Notes on Addition

- Addition is destructive, that is, the original polynomials are gone after the operation.
- We don’t salvage "garbage" nodes. Let's talk about this.
- We don't consider the case when the coefficients cancel. Let's talk about this.

Memory Management Global Allocator

- Global Allocator's store - always get and return blocks to global allocator an area in the memory from which we can dynamically allocate memory.
- The user (the program) must 'free' the memory when done.

Memory Management Garbage Collection

- Garbage collection - run time system recovers inaccessible blocks from time-to-time. Used in Lisp, Smalltalk, Java.
+ No need to return blocks to an allocator.
- Care must be taken to make unneeded blocks inaccessible.
- When garbage collection kicks in there may be undesirable response time.

Use of
 Global Allocator

```
P.exp = Q.exp : R := P ;
    R.coef := P.coef + Q.coef ;
    if R.coef = 0 then
        R := Add(P.next,Q.next);
        Free(P); Free(Q);
    else
        R.next := Add(P.next,Q.next);
        Free(Q);
```

\}

Simple Examples of List Use

- Polynomials
, $25+4 x^{2}+75 x^{85}$
- Unbounded Integers
, 4576809099383658390187457649494578
- Text
, "This is an example of text"

Unbounded Integers Base 10

- 348
Y : node pointer

List Implementations

- Two types of implementation:
, Array-Based
, Pointer-Based

List: Array Implementation

List: Array Implementation

- Basic Idea:
, Pre-allocate a big array of size MAX_SIZE
, Keep track of current size using a variable count
, Shift elements when you have to insert or delete

0	1	2	3	\cdots	count-1		MAX_SIZE-1
A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	\cdots	$\mathrm{~A}_{\mathrm{N}}$		

29

Insert Z in 3rd position Ω							
0	1	2	3	4	5		MAX_SIZE-1
A	B	C	D	E	F		
		\square		\checkmark			
0	1	2	3	4	5	6	MAX_SIZE-1
A	B	Z	C	D	E	F	

Array List Insert Running Time

- Running time for a list with N elements?
- On average, must move half the elements to make room - assuming insertions at positions are equally likely
- Worst case is insert at position 0 . Must move all N items one position before the insert
- This is $\mathrm{O}(\mathrm{N})$ running time. Probably too slow
- On the other hand - we can access the kth item in $O(1)$.

List: Pointer Implementation

- Basic Idea:
, Allocate little blocks of memory (nodes) as elements are added to the list
, Keep track of list by linking the nodes together
, Change links when you want to insert or delete

Pointer-based Insert (after p)

Insert the value \mathbf{v} after \mathbf{P}
33

Linked List with Header Node

Advantage: "insert after" and "delete after" can be done at the beginning of the list.

Insertion After

```
InsertAfter(p : node pointer, v : value_type): {
    x : node pointer;
    x := new node;
    x.value := v;
    x.next := p.next;
    p.next := x;
}
Note: cannot swap two last lines (why?)
```


Pointer Implementation Issues

- Whenever you break a list, your code should fix the list up as soon as possible
, Draw pictures of the list to visualize what needs to be done
- Pay special attention to boundary conditions:
, Empty list
, Single item - same item is both first and last
, Two items - first, last, but no middle items
, Three or more items - first, last, and middle items

Pointer List Insert Running Time

- Running time for a list with N elements?
- Insert takes constant time (O(1))
- Does not depend on list size
- Compare to array based list which is $\mathrm{O}(\mathrm{N})$

Delete After

```
DeleteAfter(p : node pointer): {
    temp : node pointer;
    temp = p.next;
    p.next = temp.next; //p.next.next
    free(temp);
\}
```

Note: p points to the node that comes before the deleted node!
temp - the node to be removed.

Doubly Linked Lists

- findPrevious (and hence Delete) is slow [O(N)] because we cannot go directly to previous node
- Solution: Keep a "previous" pointer at each node

Reverse a linked list

```
Reverse(t : node pointer): node pointer {
    rev : node pointer;
    temp: node pointer;
    rev = NULL;
    while(t !=NULL) {
        temp = t.next;
        t.next = rev;
        rev = t;
        t = temp;
    }
    return (rev); rev: the 'already reversed' part.
}
```



```
    Why do we need temp?
```


Double Link Pros and Cons

- Advantage
, Delete (not DeleteAfter) and FindPrev are faster
- Disadvantages:
, More space used up (double the number of pointers at each node)
, More book-keeping for updating the two pointers at each node (pretty negligible overhead)

Implementing Pointers in Arrays - "Cursor Implementation"

- This is needed in languages like Fortran, Basic, and assembly language
- Easiest when number of records is known ahead of time.
- Each record field of a basic type is associated with an array.
- A pointer field is an unsigned integer indicating an array index.

Idea

Pointer World	Nonpointer World			
		D	N	
n nodes	1			- D[] : basic type array
data next	2			- N[] : integer array
				- Pointer is an integer
data next	3			- null is 0
	4			- p.data is $\mathrm{D}[\mathrm{p}]$
data : basic type	5		-	- p.next is $N[p]$
next : node pointer				- Free list needed for node
				allocation
	n			

45

Example of Use

$\mathrm{L}_{\square}|\mathrm{a} \rightarrow \mathrm{b}| \rightarrow \mathrm{c} \mid \longrightarrow$ null
$\mathrm{n}=8$


```
InsertFront(L : integer, x : basic type) {
```

 q : integer
 if not(Free \(=0\)) then \(q\) := Free
 else return "overflow";
 Free := N[Free];
 D[q] := x;
 \(\mathrm{N}[\mathrm{q}]:=\mathrm{L}\)
 \(\mathrm{L}:=\mathrm{q}\);
 \}

Initialization

Free $=n$

D	
1	
2	
3	
4	
5	-
.	
.	
n	

Try DeleteFront

- Define the cursor implementation of DeleteFront which removes the first member of the list when there is one.
, Remember to add garbage to free list.

```
DeleteFront(L : integer) {
???
}
```


DeleteFront Solution

```
DeleteFront(L : integer) {
    q : integer;
    if L = 0 then return "underflow"
    else {
        q := L;
        L := N[L];
        N[q] := Free;
        Free := q;
    }
}
```

