Sorting

CSE 326
Data Structures
Unit 15

Reading:
Sections 7.1-7.3 Bubble and Insert sort, 7.5 Heap sort,

Section 3.2.6 Radix sort, Section 7.6 Mergesort,
Section 7.7 Quicksort,
Section 7.8 Lower bound

Consistent Ordering

- The comparison function must provide a consistent ordering on the set of possible keys
, You can compare any two keys and get back an indication of $a<b, a>b$, or $a=b$
, The comparison functions must be consistent
- If compare (a, b) says $a<b$, then compare (b, a) must say b>a
- If compare (a, b) says $a=b$, then compare (b, a) must say $b=a$

Sorting

- Input
, an array A of data records
, a key value in each data record
, a comparison function which imposes a consistent ordering on the keys (e.g., integers)
- Output
, reorganize the elements of A such that
- For any i and j, if $i<j$ then $A[i] \leq A[j]$

Why Sort?

- Sorting algorithms are among the most frequently used algorithms in computer science
- Allows binary search of an N -element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows O(1) time access to kth largest element in the array for any k
- Allows easy detection of any duplicates

Evaluating a Sort Algorithm: Time

- How fast is the algorithm?
, The definition of a sorted array A says that for any $i<j, A[i]<A[j]$
, This means that you need to at least check on each element at the very minimum, l.e., at least $\mathrm{O}(\mathrm{N})$
, And you could end up checking each element against every other element, which is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
, The big question is: How close to $\mathrm{O}(\mathrm{N})$ can you get?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
, E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
, Extremely important property for databases
, A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
, Is copying needed? O(n) additional space
, In-place sorting - no copying - O(1) additional space
, Somewhere in between for "temporary", e.g. O(logn) space
, External memory sorting - data so large that does not fit in memory

Example

Stable Sort

Bubble Sort

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
, Bubble every element towards its correct position
- last position has the largest element
- then bubble every element except the last one towards its correct position
- then repeat until done or until the end of the quarter, whichever comes first ...

Bubblesort (recursive)

```
bubble(A[1..n]: integer array, n : integer):
    {
```

 \}
 Put the largest element in its place

Put $2^{\text {nd }}$ largest element in its place

Two elements done, only n-2 more to go .

Insertion Sort

- What if first k elements of array are already sorted?
, 4, 7, 12, 5, 19, 16
- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get $\mathrm{k}+1$ sorted elements
$4,5,7,12,19,16$

Bubble Sort: Just Say No

- "Bubble" elements to to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
- We bubblize for $\mathrm{i}=1$ to n (i.e, n times)
- Each bubblization is a loop that makes n-i comparisons
- This is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Insertion Sort

```
InsertionSort (A[1..N]: integer array, N: integer) {
    i, j, temp: integer ;
    for i = 2 to N {
        temp := A[i];
        j := i-1;
        while j > 1 and A[j-1] > temp {
            A[j] := A[j-1]; j := j-1;
            A[j] = temp;
        }
    }
}
- Is Insertion sort in place? Stable? Running time = ?
- Have we used something similar before?
```


Example

Example

1	2	3	7	8	9	10	12	15	16	17	18	14	23

1	2	3	7	8	9	10	12	15	16	17	14	18

1	2	3	7	8	9	10	12	15	16	14	17	18	23

1	2	3	7	8	9	10	12	15	14	16	17	18	23

1	2	3	7	8	9	10	12	14	15	16	17	18	23

Insertion Sort Characteristics

- In place and Stable
- Running time
, Worst case is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- reverse order input
- must copy every element every time
- Good sorting algorithm for almost sorted data
, Each item is close to where it belongs in sorted order.

Inversions

- An inversion is a pair of elements in wrong order
, $\mathrm{i}<\mathrm{j}$ but $A[i]>A[j]$
- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements

Inversions

- A single value out of place can cause several inversions

21

Inversions

- Our simple sorting algorithms so far swap adjacent elements and remove just one inversion at a time
, Their running time is proportional to number of inversions in array
- Given N distinct keys, the maximum possible number of inversions is

$$
(n-1)+(n-2)+\ldots+1=\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}
$$

Reverse order

- All values out of place (reverse order) causes numerous inversions

Inversions and Adjacent Swap Sorts

- "Average" list will contain half the max number of inversions $=\frac{(n-1)^{n}}{4}$
, So the average running time of Insertion sort is $\Theta\left(\mathrm{N}^{2}\right)$
- Any sorting algorithm that only swaps adjacent elements requires $\Omega\left(\mathrm{N}^{2}\right)$ time because each swap removes only one inversion (lower bound)

Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Children of $A[i]=A[2 i], A[2 i+1]$
- Keep track of current size N (number of nodes)

25

1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
, Store the data at the end of the heap array
, Not "in the heap" but it is in the heap array

Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

Repeated DeleteMax

$$
\begin{equation*}
 \tag{6}
\end{equation*}
$$

\[

\]

(6)
(2)

Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

(2)

Heapsort: Analysis

- Running time
, time to build max-heap is $\mathrm{O}(\mathrm{N})$
, time for N DeleteMax operations is $\mathrm{NO}(\log \mathrm{N})$
, total time is $\mathbf{O}(\mathbf{N} \log \mathbf{N})$
- Can also show that running time is $\Omega(\mathrm{N} \log \mathrm{N})$ for some inputs,
, so worst case is $\Theta(\mathbf{N} \log \mathrm{N})$
, Average case running time is also $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Heapsort is in-place but not stable (why?)

Bucket Sort: Sorting Integers

- The goal: sort N numbers, all between 1 to k .
- Example: sort 8 numbers $3,6,7,4,11,3,5,7$. All between 1 to 12.
- The method: Use an array of k queues. Queue j (for $1 \leq j \leq k$) keeps the input numbers whose value is j.
- Each queue is denoted 'a bucket'.
- Scan the list and put the elements in the buckets.
- Output the content of the buckets from 1 to k .

Bucket Sort: Sorting Integers

- Example: sort 8 numbers 3,6,7,4,11,3,9,7 all between 1 to 12 .
- Step 1: scan the list and put the elements in the queues

- Step 2: concatenate the queues

- Time complexity: $\mathrm{O}(\mathrm{n}+\mathrm{k})$.

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to B^{P}-1
- Bucket-sort from least significant to most significant "digit" (base B)
- Requires $P(B+N)$ operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then $O(N)$ time to sort!

Radix Sort Example

After ${ }^{\text {st }}$ pass	Bucket sort by 10's digit										After $2^{\text {nd }}$ pass
3	0	1	2	3	4	5	6	7	8	9	9 721
123	0	1	2	3	4	5	6	7	8	9	721
537	$\underline{0} 3$ $\underline{0} 9$		721 123	$\begin{array}{r}53 \\ \underline{3} 8 \\ \hline\end{array}$			$\underline{67}$	$4 \underline{7}$			123
478											38
38											67
9											478

Radix Sort Example

Radix Sort Example

After $2^{\text {nd }}$ pass	Bucket sort by 100's digit										After $3^{\text {rd }}$ pass
3											3
9 721	0	1	2	3	4	5	6	7	8	9	9 38
123	003	123			478	537		721			67
537	$\bigcirc 09$										123
38	038										478
67	$\underline{067}$										537
478											721

Invariant: after k passes the low order k digits are sorted.

Properties of Radix Sort

- Not in-place
, needs lots of auxiliary storage.
- Stable
, equal keys always end up in same bucket in the same order.
- Fast
, Time to sort N numbers in the range 0 to $\mathrm{B}^{\mathrm{P}}-1$ is $\mathrm{O}(\mathrm{P}(\mathrm{B}+\mathrm{N}))$ (P iterations, B buckets in each)

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

"Divide and Conquer"

- Very important strategy in computer science:
, Divide problem into smaller parts
, Independently solve the parts
, Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves Mergesort
- Idea 2 : Partition array into items that are "small" and items that are "large", then recursively sort the two sets Quicksort

Mergesort Example

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

41

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

, Ausilary array

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

42

Merging

Merging

Right completed first

Merging

}

```
```

Merge(A[], T[] : integer array, left, right : integer) :

```
Merge(A[], T[] : integer array, left, right : integer) :
    mid, i, j, k, l, target : integer;
    mid, i, j, k, l, target : integer;
    mid := (right + left)/2;
    mid := (right + left)/2;
    i := left; j := mid + 1; target := left;
    i := left; j := mid + 1; target := left;
    while i < mid and j s right do
    while i < mid and j s right do
        if A[i] < A[j] then T[target] := A[i] ; i:= i + 1;
        if A[i] < A[j] then T[target] := A[i] ; i:= i + 1;
        else T[target] := A[j]; j := j + 1;
        else T[target] := A[j]; j := j + 1;
        target := target + 1;
        target := target + 1;
    if i > mid then //left completed//
    if i > mid then //left completed//
        for k := left to target-1 do A[k] := T[k];
        for k := left to target-1 do A[k] := T[k];
    if j > right then //right completed//
    if j > right then //right completed//
        k : = mid; l := right;
        k : = mid; l := right;
        while k \geq i do A[l] := A[k]; k := k-1; l := l-1;
        while k \geq i do A[l] := A[k]; k := k-1; l := l-1;
        for k := left to target-1 do A[k] := T[k];
```

 for k := left to target-1 do A[k] := T[k];
    ```

\section*{Iterative Mergesort}

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : \{
if left < right then
mid := (left + right)/2;
Mergesort (A, T,left,mid);
Mergesort (A, T, mid+1, right);
Merge(A, T,left,right);
\}

MainMergesort(A[1..n]: integer array, \(n\) : integer) : \{
T[1..n]: integer array;
Mergesort[A, T, 1, n];


\section*{Iterative Mergesort}


49

\section*{Mergesort Analysis}
- Let \(T(N)\) be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes \(T(N / 2)\) and merging takes \(\mathrm{O}(\mathrm{N})\)

\section*{Iterative Mergesort}
```

IterativeMergesort(A[1..n]: integer array, n : integer) :
//precondition: n is a power of 2//
i, m, parity : integer;
T[1..n]: integer array;
m := 2; parity := 0;
while m \leq n do
for i = 1 to n - m + 1 by m do
if parity = 0 then Merge(A,T,i,i+m-1);
else Merge(T,A,i,i+m-1);
parity := 1 - parity;
m := 2*m;
if parity = 1 then
for i = 1 to n do A[i] := T[i];

```

How do you handle non-powers of 2? How can the final copy be avoided?

\section*{Mergesort Recurrence Relation}
- The recurrence relation for \(T(N)\) is:
, \(T(1) \leq a\)
- base case: 1 element array constant time
, \(\mathrm{T}(\mathrm{N}) \leq 2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{dN}\)
- Sorting N elements takes
- the time to sort the left half
- plus the time to sort the right half
- plus an \(O(N)\) time to merge the two halves
- \(\mathrm{T}(\mathrm{N})=\) ?

\section*{Mergesort Analysis Upper Bound}
```

$\mathrm{T}(\mathrm{n}) \leq 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{dn} \quad$ Assuming n is a power of 2
$\leq 2(2 T(n / 4)+d n / 2)+d n$
$=4 \mathrm{~T}(\mathrm{n} / 4)+2 \mathrm{dn}$
$\leq 4(2 \mathrm{~T}(\mathrm{n} / 8)+\mathrm{dn} / 4)+2 \mathrm{dn}$
$=8 \mathrm{~T}(\mathrm{n} / 8)+3 \mathrm{dn}$
!
$\leq 2^{k} T\left(n / 2^{k}\right)+k d n$
$=n T(1)+k d n \quad$ if $n=2^{k} \quad n=2^{k}, k=\log n$
$\leq \mathrm{cn}+\mathrm{dn} \log _{2} \mathrm{n}$
$=O(n \log n)$

```

\section*{Quicksort}
- Quicksort uses a divide and conquer strategy, but does not require the \(\mathrm{O}(\mathrm{N})\) extra space that MergeSort does
, Partition array into left and right sub-arrays
- Choose an element of the array, called pivot
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
, Recursively sort left and right sub-arrays
, Concatenate left and right sub-arrays in O(1) time

\section*{Properties of Mergesort}
- Not in-place
, Requires an auxiliary array (O(n) extra space)
- Stable
, Make sure that left is sent to target on equal values.
- Iterative Mergesort reduces copying.

\section*{"Four easy steps"}
- To sort an array S
1. If the number of elements in \(\mathbf{S}\) is 0 or \(\mathbf{1}\), then return. The array is sorted.
2. Pick an element \(v\) in \(\mathbf{S}\). This is the pivot value.
3. Partition \(\mathbf{S}-\{v\}\) into two disjoint subsets, \(\mathbf{S}_{1}\) \(=\{\) all values \(x \leq v\}\), and \(\mathbf{S}_{2}=\{\) all values \(x \geq v\}\).
4. Return QuickSort( \(\mathbf{S}_{1}\) ), \(v\), QuickSort( \(\mathbf{S}_{2}\) )

The steps of QuickSort


57

\section*{Quicksort Partitioning}
- Need to partition the array into left and right subarrays
, the elements in left sub-array are \(\leq\) pivot
, elements in right sub-array are \(\geq\) pivot
- How do the elements get to the correct partition?
, Choose an element from the array as the pivot
, Make one pass through the rest of the array and swap as needed to put elements in partitions

\section*{Details, details}
- Implementing the actual partitioning
- Picking the pivot
, want a value that will cause \(\left|S_{1}\right|\) and \(\left|S_{2}\right|\) to be non-zero, and close to equal in size if possible
- Dealing with cases where an element equals the pivot

\section*{Partitioning:Choosing the pivot}
- One implementation (there are others)
, median3 finds pivot and sorts left, center, right
- Median3 takes the median of leftmost, middle, and rightmost elements
- An alternative is to choose the pivot randomly (need a random number generator; "expensive")
- Another alternative is to choose the first element (but can be very bad. Why?)
, Swap pivot with next to last element

\section*{Partitioning in-place}
, Set pointers i and j to start and end of array
, Increment i until you hit element \(\mathrm{A}[i]>\) pivot
, Decrement j until you hit element \(A[j]\) < pivot
, Swap A[i] and A[j]
, Repeat until i and j cross
, Swap pivot (at A[N-2]) with A[i]

\section*{Example}

Choose the pivot as the median of three


Median of \(0,6,8\) is 6 . Pivot is 6
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 4 & 9 & 7 & 3 & 5 & 2 & 6 & 8 \\
\hline
\end{tabular}
Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

\section*{Example}


Move i to the right up to \(A[i]\) larger than pivot. Move \(j\) to the left up to \(A[j]\) smaller than pivot. Swap

\section*{Example}


\section*{Recursive Quicksort}
```

Quicksort(A[]: integer array, left,right : integer):
pivotindex : integer;
if left + CUTOFF \leq right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex - 1);
Quicksort(A, pivotindex + 1, right);
else
Insertionsort(A,left,right);
}
Don't use quicksort for small arrays.
CUTOFF = 10 is reasonable.

```

\section*{Quicksort Worst Case Performance}
- Algorithm always chooses the worst pivot one sub-array is empty at each recursion
, \(\mathrm{T}(\mathrm{N}) \leq \mathrm{a}\) for \(\mathrm{N} \leq \mathrm{C}\)
, \(\mathrm{T}(\mathrm{N}) \leq \mathrm{T}(\mathrm{N}-1)+\mathrm{bN}\)
, \(\leq \mathrm{T}(\mathrm{N}-2)+\mathrm{b}(\mathrm{N}-1)+\mathrm{bN}\)
, \(\leq \mathrm{T}(\mathrm{C})+\mathrm{b}(\mathrm{C}+1)+\ldots+\mathrm{bN}\)
, \(\leq \mathrm{a}+\mathrm{b}(\mathrm{C}+(\mathrm{C}+1)+(\mathrm{C}+2)+\ldots+\mathrm{N})\)
, \(\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)\)
- Fortunately, average case performance is \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) (see text for proof)

\section*{Quicksort Best Case \\ Performance}
- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
, \(\mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)\)
- constant time if 0 or 1 element
, For \(\mathrm{N}>1,2\) recursive calls plus linear time for partitioning
, \(\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N})\)
- Same recurrence relation as Mergesort
\(T(N)=\underline{O(N \log N)}\)

\section*{Properties of Quicksort}
- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
- O(n log n) average case performance, but \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) worst case performance.

\section*{How fast can we sort?}
- Heapsort, Mergesort, and Quicksort all run in \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) best case running time
- Can we do any better?
- No, if sorting is comparison-based.
- We saw that radix sort is \(\mathrm{O}(\mathrm{N})\) but it is only for integers from bounded-range.

\section*{Permutations}
- How many possible orderings can you get?
, Example: a, b, c ( \(\mathrm{N}=3\) )

, 6 orderings \(=3 \cdot 2 \cdot 1=3\) ! (i.e., " 3 factorial")
, All the possible permutations of a set of 3 elements
- For N elements
, N choices for the first position, \((\mathrm{N}-1)\) choices for the second position, ..., (2) choices, 1 choice
, \(\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots(2)(1)=\mathrm{N}\) ! possible orderings

\section*{Sorting Model}
- Recall the basic assumption: we can only compare two elements at a time
, we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given \(N\) elements
, Assume no duplicates
- How many possible orderings can you get?
, Example: a, b, c ( \(\mathrm{N}=3\) )


The leaves contain all the possible orderings of \(a, b, c\)

\section*{Decision Trees}
- A Decision Tree is a Binary Tree such that:
, Each node = a set of orderings
- i.e., the remaining solution space
, Each edge = 1 comparison
, Each leaf = 1 unique ordering
, How many leaves for N distinct elements?
- N!, i.e., a leaf for each possible ordering
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

\section*{Decision Tree Example}


\section*{Decision Trees and Sorting}
- Every comparison-based sorting algorithm corresponds to a decision tree
, Finds correct leaf by choosing edges to follow
- i.e., by making comparisons
, Each decision reduces the possible solution space by one half
- Run time is \(\geq\) maximum no. of comparisons
, maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

\section*{How many leaves on a tree?}
- Suppose you have a binary tree of height d. How many leaves can the tree have?
, \(d=1\) at most 2 leaves,
, \(d=2\) at most 4 leaves, etc.


\section*{Lower bound on Height}
- A binary tree of height \(d\) has at most \(\mathbf{2 d}^{\text {d }}\) leaves
, depth \(d=1 \quad 2\) leaves, \(d=24\) leaves, etc.
, Can prove by induction
- Number of leaves, \(L \leq 2^{d}\)
- Height \(d \geq \log _{2} L\)
- The decision tree has N! leaves
- So the decision tree has height \(d \geq \log _{2}(N\) !)

\section*{Summary of Sorting}
- Sorting choices:
, \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) - Bubblesort, Insertion Sort
, \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) average case running time:
- Heapsort: In-place, not stable.
- Mergesort: \(\mathrm{O}(\mathrm{N})\) extra space, stable.
- Quicksort: claimed fastest in practice but, O(N2) worst case. Needs extra storage for recursion. Not stable.
, Run time of any comparison-based sorting algorithm is \(\Omega(N \log N)\)
O(N) - Radix Sort: fast and stable. Not comparison based. Not in-place.

\section*{\(\log (N!)\) is \(\Omega(N \log N)\)}
\[
\begin{aligned}
& \log (N!)=\log (N \cdot(N-1) \cdot(N-2) \cdots(2) \cdot(1)) \\
& =\log N+\log (N-1)+\log (N-2)+\cdots+\log 2+\log 1 \\
& \text { select just the } \\
& \overbrace{O_{0}}^{\text {first } \mathrm{N} / 2 \text { terms }} \\
& \geq \log N+\log (N-1)+\log (N-2)+\cdots+\log \frac{N}{2} \\
& \underbrace{\substack{\text { each of the selected } \\
\text { terms is } \geq \log N / 2}} \geq \frac{N}{2} \log \frac{N}{2} \\
& n!\approx \sqrt{2 \operatorname{\pi n}}(n / e)^{n} \geq \frac{N}{2}(\log N-\log 2)=\frac{N}{2} \log N-\frac{N}{2} \\
& \text { Sterling's formula }=\Omega(N \log N)
\end{aligned}
\]```

