Trees

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
, File directories or folders
, Moves in a game
, Hierarchies in organizations

Tree Jargon

- root

- nodes and edges
- leaves
- parent, children, siblings
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth

Data Structures
Unit 4

Reading: Chapter 4.1-4.3

More Tree Jargon

- Length of a path = number of edges
- Depth of a node $\mathrm{N}=$ length of path from root to N
- Height of node $\mathrm{N}=$ length of longest path from N to a leaf
- Depth of tree = depth of deepest node
- Height of tree = height of root
depth=0,

$$
\text { height = } 2
$$

Definition and Tree Trivia

- A tree is a set of nodes,i.e., either
, it's an empty set of nodes, or
, it has one node called the root from which zero or more trees (subtrees) descend
- Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again?
No. Trees can never have cycles (loops)

Paths

- A tree with N nodes always has $\mathrm{N}-1$ edges (prove it by induction)

```
Base Case: N=1
Inductive Hypothesis: Suppose that a tree with
N=k nodes always has k-1 edges.
Induction: Suppose N=k+1...
```


Implementation of Trees

- One possible pointer-based Implementation
, tree nodes with value and a pointer to each child
, but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
, $1^{\text {st }}$ Child / Next Sibling List Representation
, Each node has 2 pointers: one to its first child and one to next sibling
, Can handle arbitrary number of children

Arbitrary Branching

Binary Trees

- Every node has at most two children
, Most popular tree in computer science
- Given N nodes, what is the minimum depth of a binary tree?

Minimum depth vs node count

- At depth d , you can have $\mathrm{N}=2^{\mathrm{d}}$ to $2^{\mathrm{d}+1}-1$ nodes
- minimum depth d is $\Theta(\log \mathrm{N})$
$T(n)=\Theta(f(n))$ means
$T(n)=O(f(n))$ and $f(n)=O(T(n))$, i.e. $T(n)$ and $f(n)$ have the same growth rate $\mathrm{d}=2$
$\mathrm{N}=2^{2}$ to $2^{3}-1$ (i.e, 4 to 7 nodes)

Binary Trees

, At depth 0 (the root) there is one node.
, At depth 1, there are two nodes.
, At depth k, there are 2^{k} nodes
, At depth d (tree depth), there might be 1 to $2^{\text {d }}$ nodes.
N is the total so
$1+2+\ldots+2^{(d-1)}+1 \leq N \leq 1+2+\ldots+2^{(d-1)}+2^{d}$
$\Longrightarrow 2^{\mathrm{d}} \leq \mathrm{N} \leq 2^{\mathrm{d}+1}-1$ impliesd $_{\text {min }}=\left\lfloor\log _{2} \mathrm{~N}\right\rfloor$

Maximum depth vs node count

- What is the maximum depth of a binary tree?
, Degenerate case: Tree is a linked list!
, Maximum depth = N-1
- Goal: Would like to keep depth at around $\log \mathrm{N}$ to get better performance than linked list for operations like Find

A degenerate tree

A linked list (each node has one children).

13

Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively + * A B C D
- Inorder: Left child recursively, Node, Right child recursively A + B * + D A (B)
- Postorder: Children recursively, then Node $A B+C$ * +

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
, Visit the root
, Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
, Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively
- Traversal definitions can be extended to general (non-binary) trees

Binary Search Trees

- Binary search trees are binary trees in which
, all values in the node's left subtree are less than node value
, all values in the node's right subtree are greater than node value
- Operations:
, Find, FindMin, FindMax, Insert, Delete
What happens when we traverse the tree in inorder?

Operations on Binary Search Trees

- How would you implement these?
, Recursive definition of binary search trees allows recursive routines
Call by reference helps too

17

Find

```
Find(T : tree pointer, x : element): tree pointer {
```

Find(T : tree pointer, x : element): tree pointer {
case {
case {
T = null : return null;
T = null : return null;
T.data = x : return T;
T.data = x : return T;
T.data > x : return Find(T.left,x);
T.data > x : return Find(T.left,x);
T.data < x : return Find(T.right,x)
T.data < x : return Find(T.right,x)
}
}
}

```

Binary SearchTree


\section*{FindMin}
- Design recursive FindMin operation that returns the smallest element in a binary search tree.
```

> FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
???
}

```

\section*{Insert Operation}
- Insert (T: tree, X: element)
, Do a "Find" operation for X
, If \(X\) is found update (no need to insert)
, Else, "Find" stops at a NULL pointer
, Insert Node with X there
- Example: Insert 95


21

\section*{Insert Done with call-byreference}
reference makes a
T.data \(<\mathrm{x}\) : return Insert (T.right, x ) ; difference.

Advantage of reference parameter is that the call has the original pointer not a copy.
\(\mathrm{T}:=\) new tree; T .data \(:=\mathrm{x}\); return 1 ;//the links to
//children are null
This is where call by
T.data \(>\mathrm{x}\) : return Insert(T.left, x )
endcase
\}
```

Insert(T : reference tree pointer, x : element) : integer {

```
Insert(T : reference tree pointer, x : element) : integer {
if T = null then
if T = null then
data = x : return 0
data = x : return 0
a < x : return Insert(T.right, x);
```

a < x : return Insert(T.right, x);

```

\section*{Insert 95}


22

\section*{Delete Operation}
- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
, Find 10
, Delete the node containing 10


\section*{Delete Operation}
- Problem: When you delete a node, what do you replace it by?
- Solution:
, If it has no children, by NULL
, If it has 1 child, by that child
, If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)


25

\section*{Delete " 5 " - No children}


Delete " 24 " - One child


Delete "10" - two children


Then Delete "11" - One child
```

