## Disjoint Union / Find

CSE 326
Data Structures
Unit 13

Reading: Chapter 8

## Equivalence Relations

- A relation $R$ is defined on set $S$ if for every pair of elements $a, b \in S, a R b$ is either true or false.
- An equivalence relation is a relation $R$ that satisfies the 3 properties:
, Reflexive: a $R$ a for all $a \in S$
, Symmetric: a R b iff b R a; for all $a, b \in S$
, Transitive: a R b and b R c implies a R c


## Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements $a, b \in S$ is such that a R b.
- The equivalence class of an element a is the subset of $S$ of all elements related to a.
- Equivalence classes are disjoint sets


## Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
- Requires two operations:
, Find the equivalence class (set) of a given element
, Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!


## Disjoint Union - Find

- Maintain a set of disjoint sets.
, $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
, $\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$


## Union

- Union $(x, y)$ - take the union of two sets named $x$ and $y$
, $\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
, Union $(5,1)$
$\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,


## Find

- Find $(x)$ - return the name of the set containing $x$.
, $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
, Find $(1)=5$
, Find $(4)=8$


## An Application

- Build a random maze by erasing edges.


An Application (ct'd)

- Pick Start and End



## Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.


## An Application (ct'd)

- Repeatedly pick random edges to delete.



## A Cycle (we don't want that)



## A Good Solution



## Good Solution: A Hidden

 Tree

## Basic Algorithm

- $S=$ set of sets of connected cells
- $E=$ set of edges

```
While there is more than one set in S
    pick a random edge ( }x,y\mathrm{ )
    u := Find(x); v := Find(y);
    if u}\not=v\mathrm{ then
        Union(u,v) //knock down the wall between the cells (cells in
        Remove (x,y) from E //the same set are connected)
    - If }u=v\mathrm{ there is already a path between }x\mathrm{ and y
    - All remaining members of E form the maze
```


## Example Step

| Pick $(8,14)$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { S } \\ & \{1,2, \underline{7}, 8,9,13,19\} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Start | 1 | 2 | 3 | 4 | 5 | 6 |  | \{4\} |
|  |  |  |  |  |  |  |  | \{5\} |
|  | 7 | 8 | 9 | 10 | 11 | 12 |  | \{6\} |
|  | 13 | 14 | 15 | 16 | 17 | 18 |  | \{10\} |
|  | , |  |  | 16 | 17 | 18 |  | \{11,17\} |
|  | 19 | 20 | 21 | 22 | 23 | 24 |  | \{12] |
|  |  |  |  |  |  |  |  | \{14,20,26,27\} |
|  | 25 | 26 | 27 | 28 | 29 | 30 |  | \{15,16,21\} |
|  | 31 | 32 | 33 | 34 | 35 | 36 | End |  |
|  |  |  |  |  |  |  |  | \{22,23,24,29,30,32 |
|  |  |  |  |  |  |  |  | 33,34,35,36\} 17 |

## Example



## Example

| S |  | S |
| :---: | :---: | :---: |
| \{1,2,7, $8,9,13,19\}$ |  | \{1,2,Z工,8,9,13,19,14,20 26,27\} |
| \{3\} | $\begin{aligned} & \operatorname{Find}(8)=7 \\ & \text { Find }(14)=20 \end{aligned}$ | $\{\underline{3}\}$ |
| \{4\} |  | \{4\} |
| $\{5\}$ |  | \{5\} |
| \{6\} | Union(7,20) | \{ 6 \} |
| $\{10\}$ |  | \{10\} |
| \{11,17\} |  | $\{11,17\}$ |
| \{12\} |  | \{12\} |
| $\{14,20,26,27\}$ |  | \{15,16,21\} |
| $\{15, \underline{16}, 21\}$ |  | . |
| - |  | [ 22 , $24,29,39$ |
| 122 23 24, 29, 39, 32 |  | \{22,23,24,29,39,32 |
| $33, \underline{34}, 35,36\}$ |  | 33,34,35,36\} |

18

## Example at the End

$\{1,2,3,4,5,6, \underline{7}, \ldots 36\}$

## Up-Tree for DU/F



21

Find Operation

- Find $(x)$ follow $x$ to the root and return the root



## Simple Implementation

- Array of indices (Up[i] is parent of i)

$$
\quad \begin{gathered}
\text { Up }[\mathrm{x}]=0 \mathrm{~m} \\
\mathrm{x} \text { is a root. }
\end{gathered}
$$



## Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```


## Find

- Design Find operator
, Recursive version
, Iterative version

Find(up[] : integer array, $x$ : integer) : integer \{ //precondition: $x$ is in the range 1 to size//
???
\}

## A Bad Case



## Weighted Union

- Weighted Union (weight = number of nodes)
, Always point the smaller tree to the root of the larger tree



## Example Again



## Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least $2^{h}$.
- Proof by induction
, Basis: $\mathrm{h}=0$. The up-tree has one node, $2^{0}=1$
, Inductive step: Assume true for all h' < h.



## Worst Case for Weighted Union <br> n/2 Weighted Unions


n/4 Weighted Unions


## Example of Worst Cast (cont')

After $\mathrm{n}-1=\mathrm{n} / 2+\mathrm{n} / 4+\ldots+1$ Weighted Unions


If there are $\mathrm{n}=2^{\mathrm{k}}$ nodes then the longest path from leaf to root has length $k$.

## Weighted Union

```
W-Union(i,j : index){
//i and j are roots//
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi +wj;
}
```


## Elegant Array Implementation



Can save the extra
space by storing the complement of weight in the space reserved for the root

## Path Compression

- On a Find operation point all the nodes on the search path directly to the root.



## Self-Adjustment Works



## Example



## Path Compression Find

```
PC-Find(i : index) {
```

PC-Find(i : index) {
r := i;
r := i;
while up[r] \# 0 do //find root//
while up[r] \# 0 do //find root//
r := up[r];
r := up[r];
if i f r then //compress path//
if i f r then //compress path//
k := up[i];
k := up[i];
while k f r do
while k f r do
up[i] := r;
up[i] := r;
i := k;
i := k;
k := up[k]
k := up[k]
return(r)
return(r)
}

```
}
```


## Disjoint Union / Find

 with Weighted Union and PC- Worst case time complexity for a WUnion is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log n)$.
- Time complexity for $m \geq n$ operations on $n$ elements is $\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)$ where $\log ^{*} \mathrm{n}$ is a very slow growing function.
, $\log$ * $\mathrm{n}<7$ for all reasonable n . Essentially constant time per operation!


## Amortized Complexity

- For disjoint union / find with weighted union and path compression.
, average time per operation is essentially a constant.
, worst case time for a PC-Find is O(log $n$ ).
- An individual operation can be costly, but over time the average cost per operation is not.


## Find Solutions

```
Recursive
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}
Iterative
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] = 0 do
    x := up[x];
return x;
}
```

