The mid-term exam will take place on Friday, Feb. 6, EE1-105. 4:00-5:00 pm.

You can bring any written material to the exam (this includes books, lecture notes, your HW, anything else you find useful). No energy-consuming gadgets are allowed.

You will be provided with the text of the exam and enough paper (back pages) to do your work. You can bring scratch paper if you wish so.

Please, no cheating!

Topics covered:
· Linked lists. Simple linked lists, doubly linked lists.

· Stacks and Queues, array and list implementations.
· Recursion. Designing algorithms recursively, using call by reference.
· Use of induction.
· Analysis of algorithms. Worst case, average case, upper bound, lower bound, analyzing loops, O, Theta and Omega notations.
· Trees and traversals. inorder, preorder, postorder.
· Binary search trees. Inorder traversal, insert, delete, find.
· AVL trees.
· Splay trees.
· B-trees.

· rank trees.

· Binary Heaps.
· Binomial Queues.

You should be familiar with everything covered in class and in the book (related to the above topics). It is recommended to solve the relevant exercises from the book. In addition, below are a few more practice questions.
Good luck, Tami

1. Consider a tree in which each node has at most three children. Each node has the following structure:

struct node {

label int;

left struct node pointer;

middle struct node pointer;

right struct node pointer;

};

For nodes with less than three children the appropriate fields are NULL. The initial values of the `label’ fields are unknown.

a. Complete the pseudocode of the recursive function fill_label(k, root), that gets as input an integer k and a pointer to a tree root, and fills the `label’ fields of all the tree nodes, such that for each node, v, the value of v.label fulfills:

 k if v is the tree root

 v.label = 1+ u.label if v is a left child of u

 2+ u.label if v is a middle child of u

 3+ u.label if v is a right child of u

fill_label(k integer, v struct node pointer):void{

}

b. What is the time complexity of fill_label() as a function of the number of nodes, n, in the tree? Explain.

c. What is the space complexity of fill_label() as a function of the number of nodes, n, in the tree? Explain.

d. Do your answers to either of b or c change if it is known that the tree is balanced? Explain.

2. Consider a linked list in which every element has a ‘data’ field, which contains an integer, and a ‘next’ field, which points to the next element in the list.

Complete the function MidTermFunction() that gets as input a list, and removes from the list all the elements that have an odd-number data.

For example, if the list is header -> 8 ->5 ->7 ->12 ->10 ->3 then after calling the function, the list should be header -> 8 ->12 ->10.

Remarks:

1. This is a destructive function; you do not need to keep the original list.

2. You need to free the space of the removed elements.

3. Assume that the list has a header, that is, p points to some dummy element, and p.next is the first element in the list.

MidTermFunction(p: struct node pointer) {

 temp : struct node pointer;

 while () {

 } // end of while loop

} // end of function

3. Suggest a data structure that will support the following operations, each in O(log n), where n is the number of elements in the structure at the time of the operation.

The elements in the structure are integral number, each element is colored green or red.

· Insert(i) – add the number i to the structure (if it is not there yet). A new number is added as green.

· PaintRed(i) – if i is in the structure, and it is green, color it red.

· FindDiff(k) – return the difference between the sum of the green elements that are smaller than k, and the sum of the red elements that are smaller than k.

4. Is there an AVL tee of height 4 and 11 nodes? Justify your answer.

5. Write pseudo-code to implement two stacks in one array. Your stack routines should not declare an overflow unless every slot in the array is used.
6. A point in the 2-dimentional plane is given by its coordinates (x,y).

Suggest (explain in words) a data structure that supports the following operations in the specified time complexity.

insert(x,y) – add a new point whose coordinates are (x,y). Time complexity O(log n).

delete(x,y) – delete the point whose coordinates are (x,y). Time complexity O(log n).

line(m) – print all the points (xi,yi) for which xi+yi=m. In other words, print all the points that are along the line x+y=m. Time complexity: O(log n +k) where k is the number of points in the output.

Remark: n is the number of points at the time the operation is performed.
7. Given a binary search tree (not necessarily balanced), suggest an algorithm that creates an additional binary tree in which the key of each node is the total sum of the keys in the input tree who are smaller or equal to that node’s key. The input tree must not be changed. Your function has to allocate space for the new tree. Your solution should include pseudocode and an explanation in words. The time and space complexities of your solution should be O(n)

Example: An input tree and the constructed output tree.

3

7

27

40

95

21

13

19

5

15

2

10

5

17

74

10

55

2

