
CSE 326: Data Structures

Java Generics & JUnit

Section notes, 4/10/08

slides by Hal Perkins

Type-Safe Containers
• Idea – a class or interface can have a type

parameter:
public class Bag<E> {

private E item;
public void setItem(E x) { item = x; }
public E getItem() { return item; }

}
• Given such a type, we can create & use instances:

Bag<String> b = new Bag<String>();
b.setItem(“How about that?”);
String contents = b.getItem();

4/10/2008 06b-2

Why?
• Main advantage is compile-time type checking:

– Ensure at compile time that items put in a generic
container have the right type

– No need for a cast to check the types of items returned;
guaranteed by type system

• Underneath, everything is a raw object, but we
don’t have to write the casts explicitly or worry
about type failures

4/10/2008 3

Type Erasure
• Type parameters are a compile-time-only artifact. At

runtime, only the raw types are present
• So, at runtime, the compile-time class Bag<E> is just

a Bag (only one instance of class Bag), and everything
added or removed is just an Object, not a particular E
– Casts, etc. are inserted by compiler as needed, but

guaranteed to succeed if generics rules are obeyed
– Underlying code and JVM is pre-generics Java

• Ugly, but necessary design decision
– Makes it possible for new code that uses generics to

interoperate with old code that doesn’t
– Not how you would do it if you could start over

4/10/2008 4

Type Erasure Consequences
• Code in a class cannot depend on the actual value of a

type parameter at runtime. Examples of problems:
public class Bag<E> {

private E item; // OK

private E[] array; // also OK

public Bag() {

item = new E(); // error – new E() not allowed

array = new E[10]; // error – new E[] also not allowed

}

}

4/10/2008 5

But I Need to Make an E[]!!!!
• Various solutions. For simple case, we can use an

unchecked cast of an Object array (which is what
it really is underneath anyway)

E[] stuff = (E[])new Object[size];
– All the other code that uses stuff[] and its elements will

work and typecheck just fine

• Be sure you understand the cause of all unchecked
cast warnings, & limit to “safe” situations like this

• More complex solutions if you want more type
safety or have more general requirements – see
references for detailed discussions

4/10/2008 6

Example with “Generic” Array
public class Bag<E> {

// instance variable

E[] items;

// constructor

public Bag() {

items = (E[]) new

Object[10];

}

// methods

public void store(E item)

{ items[0] = item; }

public E get()

{ return items[0]; }

|}

4/10/2008 7

References
• Textbook (Weiss), sec. 1.5.3

• Sun online Java tutorial
java.sun.com/docs/books/tutorial/extra/generics/index.html

• For the truly hard-core:
Java Generics and Collections, Maurice Naftalin & Philip

Wadler, O’Reilly, 2006

The Java Programming Language, 4th ed., Arnold,
Gosling & Holmes, A-W, 2006

• And for the Language Lawyers in the crowd:
The Java Language Specification, 3rd ed., Gosling, Joy,

Steele & Bracha, A-W, 2005
4/10/2008 8

Testing & Debugging

• Testing Goals
– Verify that software behaves as expected
– Be able to recheck this as the software evolves

• Debugging
– A controlled experiment to discover what is wrong
– Strategies and questions:

• What’s wrong?
• What do we know is working? How far do we get before

something isn’t right?
• What changed?

– (Even if the changed code didn’t produce the bug, it’s fairly
likely that some interaction between the changed code and other
code did.)

4/10/2008 06a-9

Unit Tests

• Idea: create small tests that verify individual
properties or operations of objects
– Do constructors and methods do what they are

supposed to?

– Do variables and value-returning methods have the
expected values?

– Is the right output produced?

• Lots of small unit tests, each of which test
something specific; not big, complicated tests
– If something breaks, the broken test should be a great

clue about where the problem is

4/10/2008 06a-10

JUnit

• Test framework for Java Unit tests
• Idea: implement classes that extend the JUnit

TestCase class
• Each test in the class is named testXX (name

starting with “test” is the key)
• Each test performs some computation and then

checks the result
• Optional: setUp() method to initialize instance

variables or otherwise prepare before each test
• Optional: tearDown() to clean up after each test

– Less commonly used than setUp()

4/10/2008 06a-11

Example

• Tests for a simple calculator object

import junit.framework.TestCase;
public class CalculatorTest extends TestCase {

public void testAddition() {
Calculator calc = new Calculator();
int expected = 7;
int actual = calc.add(3, 4);
assertEquals(“adding 3 and 4”, expected, actual);

}
…

}

4/10/2008 06a-12

Another Calculator Test

public void testDivisionByZero() {

Calculator calc = new Calculator();

try { // verify exception thrown

calc.divide(2, 0);

fail(“should have thrown an exception”);

} catch (ArithmeticException e) {

// do nothing – this is what we expect

}

}

4/10/2008 06a-13

What Kinds of Checks are Available

• Look in junit.framework.Assert (JavaDocs on
www.junit.org)

• Examples
• assertEquals(expected, actual); // works on any type except

// double; uses .equals() for objects
• assertEquals(messsage, expected, actual);

// all have variations with messages
• assertEquals(expected, actual, delta);

// for doubles to test “close enough”
• assertFalse(condition);
• assertTrue(condition);
• assertNotNull(object);
• assertNull(object);
• fail();
• // and some others

4/10/2008 06a-14

setUp

• If the tests require some common initial setup, we can
write this once and it is automatically executed before
each test (i.e., each test starts with a fresh setUp)

import junit.framework.TestCase;
public class CalculatorTest extends TestCase {

private Calculator calc; // calculator object for tests
/** initialize: repeated before each test */
protected void setUp() {

calc = new Calculator();
}

// tests as before, but without local declaration/initialization of calc

4/10/2008 06a-15

