
1

Sorting Lower Bound

Radix Sort

CSE 326

Data Structures

Lecture 16

Sorting Lower Bound, Radix Sort -
Lecture 16

2

Reading

• Reading
› Sections 7.8-7.11

Sorting Lower Bound, Radix Sort -
Lecture 16

3

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all

run in O(N log N) best case running
time

• Can we do any better?

• No, if the basic action is a comparison.

Sorting Lower Bound, Radix Sort -
Lecture 16

4

Sorting Model

• Recall our basic assumption: we can only

compare two elements at a time

› we can only reduce the possible solution space by

half each time we make a comparison

• Suppose you are given N elements

› Assume no duplicates

• How many possible orderings can you get?

› Example: a, b, c (N = 3)

Sorting Lower Bound, Radix Sort -
Lecture 16

5

Permutations

• How many possible orderings can you get?

› Example: a, b, c (N = 3)

› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)

› 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)

› All the possible permutations of a set of 3 elements

• For N elements

› N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice

› N(N-1)(N-2)L(2)(1)= N! possible orderings

Sorting Lower Bound, Radix Sort -
Lecture 16

6

Decision Tree

a < b < c, b < c < a,

c < a < b, a < c < b,

b < a < c, c < b < a

a < b < c

c < a < b

a < c < b

b < c < a

b < a < c

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < c < a

b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

2

Sorting Lower Bound, Radix Sort -
Lecture 16

7

Decision Trees

• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings

• ie, the remaining solution space

› Each edge = 1 comparison

› Each leaf = 1 unique ordering

› How many leaves for N distinct elements?

• N!, ie, a leaf for each possible ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

Sorting Lower Bound, Radix Sort -
Lecture 16

8

Decision Trees and Sorting

• Every sorting algorithm corresponds to a

decision tree

› Finds correct leaf by choosing edges to follow

• ie, by making comparisons

› Each decision reduces the possible solution space

by one half

• Run time is ≥ maximum no. of comparisons

› maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height

of the tree

Sorting Lower Bound, Radix Sort -
Lecture 16

9

Decision Tree Example

a < b < c, b < c < a,

c < a < b, a < c < b,

b < a < c, c < b < a

a < b < c

c < a < b

a < c < b

b < c < a

b < a < c

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < c < a

b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

Sorting Lower Bound, Radix Sort -
Lecture 16

10

How many leaves on a tree?

• Suppose you have a binary tree of height d .

How many leaves can the tree have?

› d = 1 à at most 2 leaves,

› d = 2 à at most 4 leaves, etc.

Sorting Lower Bound, Radix Sort -
Lecture 16

11

Lower bound on Height

• A binary tree of height d has at most 2d leaves

› depth d = 1 à 2 leaves, d = 2 à 4 leaves, etc.

› Can prove by induction

• Number of leaves, L < 2d

• Height d > log2 L

• The decision tree has N! leaves

• So the decision tree has height d ≥ log2(N!)

Sorting Lower Bound, Radix Sort -
Lecture 16

12

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log

)1()2()2()1(log)!log(

NN

N
N

N
N

N

NN

N
NNN

NNN

NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

L

L

L

select just the

first N/2 terms

each of the selected

terms is ≥ logN/2

3

Sorting Lower Bound, Radix Sort -
Lecture 16

13

Ω(N log N)

• Run time of any comparison-based
sorting algorithm is ΩΩΩΩ(N log N)

• Can we do better if we don’t use
comparisons?

Sorting Lower Bound, Radix Sort -
Lecture 16

14

Radix Sort: Sorting integers

• Historically goes back to the 1890 census.

• Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1

• Bucket-sort from least significant to most

significant “digit” (base B)

• Requires P(B+N) operations where P is the

number of passes (the number of base B digits

in the largest possible input number).

• If P and B are constants then O(N) time to sort!

Sorting Lower Bound, Radix Sort -
Lecture 16

15

67
123

38
3

721
9

537
478

Bucket sort

by 1’s digit

0 1

721

2 3

3

123

4 5 6 7

537

67

8

478

38

9

9

Input data

This example uses

B=10 and base 10

digits for simplicity of

demonstration. Larger

bucket counts should

be used in an actual

implementation.

Radix Sort Example

721

3

123

537

67

478

38

9

After 1st pass

Sorting Lower Bound, Radix Sort -
Lecture 16

16

Bucket sort

by 10’s

digit

0

03

09

1 2

721

123

3

537

38

4 5 6

67

7

478

8 9

Radix Sort Example

721

3

123

537

67

478

38

9

After 1st pass After 2nd pass

3

9

721

123

537

38

67

478

Sorting Lower Bound, Radix Sort -
Lecture 16

17

Bucket sort

by 100’s

digit

0

003

009

038

067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example

After 2nd pass

3

9

721

123

537

38

67

478

After 3rd pass

3

9

38

67

123

478

537

721

Invariant: after k passes the low order k digits are sorted.

Sorting Lower Bound, Radix Sort -
Lecture 16

18

Implementation Options

• List
› List of data, bucket array of lists.

› Concatenate lists for each pass.

• Array / List
› Array of data, bucket array of lists.

• Array / Array
› Array of data, array for all buckets.

› Requires counting.

4

Sorting Lower Bound, Radix Sort -
Lecture 16

19

Array / Array

478

537

9

721

3

38

123

67

0

1

2

3

4

5

6

7

Data Array

0

1

0

2

0

0

0

2

0

1

2

3

4

5

6

7

8

9

2

1

Count Array

0

0

1

1

3

3

3

3

0

1

2

3

4

5

6

7

8

9

5

7

Address Array

add[0] := 0

add[i] := add[i-1] + count[i-1], i > 0

721

3

123

537

67

478

38

9

0

1

2

3

4

5

6

7

Target Array

Bucket i ranges from

add[i] to add[i+1]-1

1

3

7

8

9

Sorting Lower Bound, Radix Sort -
Lecture 16

20

Array / Array

• Pass 1 (over A)
› Calculate counts and addresses for 1st “digit”

• Pass 2 (over T)
› Move data from A to T

› Calculate counts and addresses for 2nd “digit”

• Pass 3 (over A)
› Move data from T to A

› Calculate counts and addresses for 3nd “digit”

• …

• In the end an additional copy may be needed.

Sorting Lower Bound, Radix Sort -
Lecture 16

21

Choosing Parameters for

Radix Sort
• N number of integers – given

• m bit numbers - given

• B number of buckets
› B = 2r – calculations can be done by shifting.

› N/B not too small, otherwise too many empty
buckets.

› P = m/r should be small.

• Example – 1 million 64 bit numbers. Choose
B = 216 =65,536. 1 Million / B ≈ 15 numbers
per bucket. P = 64/16 = 4 passes.

Sorting Lower Bound, Radix Sort -
Lecture 16

22

Properties of Radix Sort

• Not in-place
› needs lots of auxiliary storage.

• Stable
› equal keys always end up in same bucket

in the same order.

• Fast
› B = 2r buckets on m bit numbers

() time)2n
r

m
O(r+

Sorting Lower Bound, Radix Sort -
Lecture 16

23

Internal versus External

Sorting
• So far assumed that accessing A[i] is fast –

Array A is stored in internal memory (RAM)

› Algorithms so far are good for internal sorting

• What if A is so large that it doesn’t fit in

internal memory?

› Data on disk or tape

› Delay in accessing A[i] – e.g. need to spin disk

and move head

Sorting Lower Bound, Radix Sort -
Lecture 16

24

Internal versus External

Sorting
• Need sorting algorithms that minimize

disk/tape access time
› External sorting – Basic Idea:

• Load chunk of data into RAM, sort, store this
“run” on disk/tape

• Use the Merge routine from Mergesort to
merge runs

• Repeat until you have only one run (one sorted
chunk)

• Text gives some examples

5

Sorting Lower Bound, Radix Sort -
Lecture 16

25

Summary of Sorting

• Sorting choices:

› O(N2) – Bubblesort, Insertion Sort

› O(N log N) average case running time:

• Heapsort: In-place, not stable (read about it).

• Mergesort: O(N) extra space, stable.

• Quicksort: claimed fastest in practice but, O(N2) worst

case. Needs extra storage for recursion. Not stable.

› O(N) – Radix Sort: fast and stable. Not

comparison based. Not in-place.

