
1

CSE 326: Data 

Structures

lecture 17

Really, Really
Hard Problems

Winter 
Quarter 
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Today’s Agenda

• Solving two pencil-on-paper puzzles

› Euler Circuits

› Hamiltonian circuits

• Hamiltonian circuits and NP complete 

problems

• The NP = P problem

› Your chance to win a Turing award!

• Weiss Chapter 9.7
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W. R. 

Hamilton

(1805-1865)

L. Euler

(1707-1783)
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It’s Puzzle Time!

Which of these can you draw without lifting your 
pencil, drawing each line only once?

Can you start and end at the same point?
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Historical Puzzle: Seven Bridges 
of Königsberg

KNEIPHOFF

PREGEL

Want to cross all bridges but…

Can cross each bridge only once
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A “Multigraph” for the Bridges of 
Königsberg

Find a path that

traverses every edge
exactly once
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Euler Circuits and Tours

• Euler tour: a path through a graph that visits each edge 

exactly once

• Euler circuit: an Euler tour that starts and ends at the 

same vertex

• Named after Leonhard Euler (1707-1783), who 

cracked this problem and founded graph theory in 

1736

• Some observations for undirected graphs:

› An Euler circuit exists iff the graph is connected and each 

vertex has even degree (= # of edges on the vertex) 

› An Euler tour exists iff the graph is connected and either all 

vertices have even degree or exactly two have odd degree
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Euler Circuit Problem

• Problem: Given an undirected graph G, 

find an Euler circuit

• How can we check if one exists in linear 

time?

• Given that an Euler circuit exists, how 

do we construct an Euler circuit for G?
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Finding Euler Circuits

• Given a graph G = (V,E), find an Euler circuit 
in G

› Can check if one exists in O(|V|+|E|) time 
(check degrees)

• Basic Euler Circuit Algorithm: 

1. Do an edge walk from a start vertex until 
you are back to the start vertex.  You 
never get stuck because of the even 
degree property. 

2. The walk is removed leaving several 
components each with the even degree 
property.  Recursively find Euler circuits 
for these. 

3. Splice all these circuits into an Euler 
circuit

• Running time = O(|V| + |E|)
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Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

P vs. NP, Lecture 17 10

Euler Circuit Example
A

B C

D E

F

G

Euler(A) :

A B G E D G C A
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Euler Circuit Example
A

B C

D E

F

G

Euler(A) :
A B G E D G C A

B C

D E

F

Euler(B)
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Euler Circuit Example
A

B C

D E

F

G

Euler(A) :

A B G E D G C A

B C

D E

F

Euler(B):
B D F E C B
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Euler Circuit Example
A

B C

D E

F

G

Euler(A) :
A B G E D G C A

B C

D E

F

Euler(B):

B D F E C B

Splice

A B D F E C B G E D G C A
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Data Structure?
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Euler with a Twist: 

Hamiltonian Circuits
• Euler circuit: A cycle that goes 

through each edge exactly once

• Hamiltonian circuit: A cycle that 
goes through each vertex exactly 
once

• Does graph I have:

› An Euler circuit?

› A Hamiltonian circuit?

• Does graph II have:

› An Euler circuit?

› A Hamiltonian circuit?

B C

D E

G

B C

D E

G I

II
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Finding Hamiltonian Circuits in 

Graphs
• Problem: Find a Hamiltonian circuit in a graph G

› Sub-problem: Does G contain a Hamiltonian circuit?

› No known easy algorithm for checking this…

• One solution: Search through all paths to find one 

that visits each vertex exactly once

› Can use your favorite graph search algorithm (DFS!) to find 

various paths

• This is an exhaustive search (“brute force”) algorithm

• Worst case à need to search all paths

› How many paths??
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Analysis of our Exhaustive 

Search Algorithm
• Worst case à need to search all 

paths

› How many paths?

• Can depict these paths as a search 

tree

• Let the average branching factor of 

each node in this tree be B 

• |V| vertices, each with ≈ B branches

• Total number of paths ≈ B·B·B … ·B 

= O(B|V|)

• Worst case à Exponential time!
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Etc. 

Search tree of paths from B
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Review: Polynomial versus 
Exponential Time

• Most of our algorithms so far have been O(log 

N), O(N), O(N log N) or O(N2) running time for 

inputs of size N

› These are all polynomial time algorithms

› Their running time is O(Nk) for some k > 0

• Exponential time BN is asymptotically worse 

than any polynomial function Nk for any k

P vs. NP, Lecture 17 20

The Complexity Class P

• The set P is defined as the set of all 
problems that can be solved in 

polynomial worse case time

› Also known as the polynomial time
complexity class

› All problems that have some algorithm

whose running time is O(Nk) for some k

• Examples of problems in P: sorting, 

shortest path, Euler circuit, etc.
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The Complexity Class NP

• Definition: NP is the set of all problems 
for which a given candidate solution can 

be tested in polynomial time

• Example of a problem in NP:

› Hamiltonian circuit problem: Why is it in 

NP?
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The Complexity Class NP
• Definition: NP is the set of all problems for 

which a given candidate solution can be tested

in polynomial time

• Example of a problem in NP:

› Hamiltonian circuit problem: Why is it in 

NP?

• Given a candidate path, can test in linear 

time if it is a Hamiltonian circuit – just 

check if all vertices are visited exactly 

once in the candidate path
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Why NP?
• NP stands for Nondeterministic Polynomial time

› Why “nondeterministic”? Corresponds to algorithms that can 

guess a solution (if it exists) à the solution is then verified to 

be correct in polynomial time

› Nondeterministic algorithms don’t exist – purely theoretical 

idea invented to understand how hard a problem could be

• Examples of problems in NP:

› Hamiltonian circuit: Given a candidate path, can test in linear 

time if it is a Hamiltonian circuit

› Satisfiability: Given a circuit made out of AND, OR, NOT 

gates: is there an input that makes it output “1”?

› All problems that are in P      (why?)
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Your Chance to Win a Turing 

Award
• It is generally believed that P ≠ NP, i.e.

there are problems in NP that are not in 

P

› But no one has been able to show even 

one such problem!

› This is the fundamental open problem in 

theoretical computer science

› Nearly everyone has given up trying to 

prove it.  Instead, theoreticians prove 

theorems about what follows once we 

assume P ≠ NP !

Alan Turing

(1912-1954)
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NP-Complete Problems
• The “hardest” problems in NP are called NP-

complete 

› If any NP-complete problem is in P, then all of NP is in P

• Examples:

› Hamiltonian circuit

› Traveling salesman: find the shortest path that visits all 

nodes in a weighted graph (okay to repeat edges & nodes)

› Graph coloring: can the vertices of a graph be colored using 

K colors, such that no two adjacent vertices have the same 

color?

› Crossword puzzle construction: can a given set of 2N words, 

each of length N, be arranged in an NxN crossword puzzle?
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P, NP, and Exponential Time 
Problems

• All currently known
algorithms for NP-complete 
problems run in 
exponential worst case 
time
› Finding a polynomial time 

algorithm for any NPC 
problem would mean:

• Diagram depicts 
relationship between P, NP, 
and EXPTIME (class of 
problems that provably 
require exponential time to 
solve)

It is believed that 

P ≠ NP ≠ EXPTIME

EXPTIME

NP

P

NPC
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Coping with NP-Completeness
1. Settle for algorithms that are fast on average: Worst 

case still takes exponential time, but doesn’t occur 
very often. 

But some NP-Complete problems are also average-time NP-

Complete! 

2. Settle for fast algorithms that give near-optimal 

solutions: In traveling salesman, may not give the 

cheapest tour, but maybe good enough. 

But finding even approximate solutions to some NP-Complete 

problems is NP-Complete!

3. Just get the exponent as low as possible!  Much work 

on exponential algorithms for satisfiability: in practice 

can often solve circuits with 1,000+ inputs

But even 2n/100 will eventual hit the exponential curve!
P vs. NP, Lecture 17 28

Great Quick Reference

• Computers and Intractability: A Guide to the 

Theory of NP-Completeness, by Michael S. 

Garey and David S. Johnson
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Data Structure
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Data Structure
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