
1

CSE 326: Data

Structures

lecture 17

Really, Really
Hard Problems

Winter
Quarter

2008 P vs. NP, Lecture 17 2

Today’s Agenda

• Solving two pencil-on-paper puzzles

› Euler Circuits

› Hamiltonian circuits

• Hamiltonian circuits and NP complete

problems

• The NP = P problem

› Your chance to win a Turing award!

• Weiss Chapter 9.7

1−=πi
e

W. R.

Hamilton

(1805-1865)

L. Euler

(1707-1783)

P vs. NP, Lecture 17 3

It’s Puzzle Time!

Which of these can you draw without lifting your
pencil, drawing each line only once?

Can you start and end at the same point?

P vs. NP, Lecture 17 4

Historical Puzzle: Seven Bridges
of Königsberg

KNEIPHOFF

PREGEL

Want to cross all bridges but…

Can cross each bridge only once

P vs. NP, Lecture 17 5

A “Multigraph” for the Bridges of
Königsberg

Find a path that

traverses every edge
exactly once

P vs. NP, Lecture 17 6

Euler Circuits and Tours

• Euler tour: a path through a graph that visits each edge

exactly once

• Euler circuit: an Euler tour that starts and ends at the

same vertex

• Named after Leonhard Euler (1707-1783), who

cracked this problem and founded graph theory in

1736

• Some observations for undirected graphs:

› An Euler circuit exists iff the graph is connected and each

vertex has even degree (= # of edges on the vertex)

› An Euler tour exists iff the graph is connected and either all

vertices have even degree or exactly two have odd degree

2

P vs. NP, Lecture 17 7

Euler Circuit Problem

• Problem: Given an undirected graph G,

find an Euler circuit

• How can we check if one exists in linear

time?

• Given that an Euler circuit exists, how

do we construct an Euler circuit for G?

P vs. NP, Lecture 17 8

Finding Euler Circuits

• Given a graph G = (V,E), find an Euler circuit
in G

› Can check if one exists in O(|V|+|E|) time
(check degrees)

• Basic Euler Circuit Algorithm:

1. Do an edge walk from a start vertex until
you are back to the start vertex. You
never get stuck because of the even
degree property.

2. The walk is removed leaving several
components each with the even degree
property. Recursively find Euler circuits
for these.

3. Splice all these circuits into an Euler
circuit

• Running time = O(|V| + |E|)

P vs. NP, Lecture 17 9

Euler Circuit Example

A

B C

D E

F

G

Euler(A) :

P vs. NP, Lecture 17 10

Euler Circuit Example
A

B C

D E

F

G

Euler(A) :

A B G E D G C A

P vs. NP, Lecture 17 11

Euler Circuit Example
A

B C

D E

F

G

Euler(A) :
A B G E D G C A

B C

D E

F

Euler(B)

P vs. NP, Lecture 17 12

Euler Circuit Example
A

B C

D E

F

G

Euler(A) :

A B G E D G C A

B C

D E

F

Euler(B):
B D F E C B

3

P vs. NP, Lecture 17 13

Euler Circuit Example
A

B C

D E

F

G

Euler(A) :
A B G E D G C A

B C

D E

F

Euler(B):

B D F E C B

Splice

A B D F E C B G E D G C A
P vs. NP, Lecture 17 14

Data Structure?

P vs. NP, Lecture 17 15

Euler with a Twist:

Hamiltonian Circuits
• Euler circuit: A cycle that goes

through each edge exactly once

• Hamiltonian circuit: A cycle that
goes through each vertex exactly
once

• Does graph I have:

› An Euler circuit?

› A Hamiltonian circuit?

• Does graph II have:

› An Euler circuit?

› A Hamiltonian circuit?

B C

D E

G

B C

D E

G I

II

P vs. NP, Lecture 17 16

Finding Hamiltonian Circuits in

Graphs
• Problem: Find a Hamiltonian circuit in a graph G

› Sub-problem: Does G contain a Hamiltonian circuit?

› No known easy algorithm for checking this…

• One solution: Search through all paths to find one

that visits each vertex exactly once

› Can use your favorite graph search algorithm (DFS!) to find

various paths

• This is an exhaustive search (“brute force”) algorithm

• Worst case à need to search all paths

› How many paths??

P vs. NP, Lecture 17 17

Analysis of our Exhaustive

Search Algorithm
• Worst case à need to search all

paths

› How many paths?

• Can depict these paths as a search

tree

• Let the average branching factor of

each node in this tree be B

• |V| vertices, each with ≈ B branches

• Total number of paths ≈ B·B·B … ·B

= O(B|V|)

• Worst case à Exponential time!

B C

D E

G

B

D G C

G E D E C G E

Etc.

Search tree of paths from B
P vs. NP, Lecture 17 18

1

100000

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

1 10 100 1000

2^N

1.2^N

N 5̂

N 3̂

5N

Exponential Time

PC, since Big Bang

PC, 1 day

4

P vs. NP, Lecture 17 19

Review: Polynomial versus
Exponential Time

• Most of our algorithms so far have been O(log

N), O(N), O(N log N) or O(N2) running time for

inputs of size N

› These are all polynomial time algorithms

› Their running time is O(Nk) for some k > 0

• Exponential time BN is asymptotically worse

than any polynomial function Nk for any k

P vs. NP, Lecture 17 20

The Complexity Class P

• The set P is defined as the set of all
problems that can be solved in

polynomial worse case time

› Also known as the polynomial time
complexity class

› All problems that have some algorithm

whose running time is O(Nk) for some k

• Examples of problems in P: sorting,

shortest path, Euler circuit, etc.

P vs. NP, Lecture 17 21

The Complexity Class NP

• Definition: NP is the set of all problems
for which a given candidate solution can

be tested in polynomial time

• Example of a problem in NP:

› Hamiltonian circuit problem: Why is it in

NP?

P vs. NP, Lecture 17 22

The Complexity Class NP
• Definition: NP is the set of all problems for

which a given candidate solution can be tested

in polynomial time

• Example of a problem in NP:

› Hamiltonian circuit problem: Why is it in

NP?

• Given a candidate path, can test in linear

time if it is a Hamiltonian circuit – just

check if all vertices are visited exactly

once in the candidate path

P vs. NP, Lecture 17 23

Why NP?
• NP stands for Nondeterministic Polynomial time

› Why “nondeterministic”? Corresponds to algorithms that can

guess a solution (if it exists) à the solution is then verified to

be correct in polynomial time

› Nondeterministic algorithms don’t exist – purely theoretical

idea invented to understand how hard a problem could be

• Examples of problems in NP:

› Hamiltonian circuit: Given a candidate path, can test in linear

time if it is a Hamiltonian circuit

› Satisfiability: Given a circuit made out of AND, OR, NOT

gates: is there an input that makes it output “1”?

› All problems that are in P (why?)

P vs. NP, Lecture 17 24

Your Chance to Win a Turing

Award
• It is generally believed that P ≠ NP, i.e.

there are problems in NP that are not in

P

› But no one has been able to show even

one such problem!

› This is the fundamental open problem in

theoretical computer science

› Nearly everyone has given up trying to

prove it. Instead, theoreticians prove

theorems about what follows once we

assume P ≠ NP !

Alan Turing

(1912-1954)

5

P vs. NP, Lecture 17 25

NP-Complete Problems
• The “hardest” problems in NP are called NP-

complete

› If any NP-complete problem is in P, then all of NP is in P

• Examples:

› Hamiltonian circuit

› Traveling salesman: find the shortest path that visits all

nodes in a weighted graph (okay to repeat edges & nodes)

› Graph coloring: can the vertices of a graph be colored using

K colors, such that no two adjacent vertices have the same

color?

› Crossword puzzle construction: can a given set of 2N words,

each of length N, be arranged in an NxN crossword puzzle?

P vs. NP, Lecture 17 26

P, NP, and Exponential Time
Problems

• All currently known
algorithms for NP-complete
problems run in
exponential worst case
time
› Finding a polynomial time

algorithm for any NPC
problem would mean:

• Diagram depicts
relationship between P, NP,
and EXPTIME (class of
problems that provably
require exponential time to
solve)

It is believed that

P ≠ NP ≠ EXPTIME

EXPTIME

NP

P

NPC

P vs. NP, Lecture 17 27

Coping with NP-Completeness
1. Settle for algorithms that are fast on average: Worst

case still takes exponential time, but doesn’t occur
very often.

But some NP-Complete problems are also average-time NP-

Complete!

2. Settle for fast algorithms that give near-optimal

solutions: In traveling salesman, may not give the

cheapest tour, but maybe good enough.

But finding even approximate solutions to some NP-Complete

problems is NP-Complete!

3. Just get the exponent as low as possible! Much work

on exponential algorithms for satisfiability: in practice

can often solve circuits with 1,000+ inputs

But even 2n/100 will eventual hit the exponential curve!
P vs. NP, Lecture 17 28

Great Quick Reference

• Computers and Intractability: A Guide to the

Theory of NP-Completeness, by Michael S.

Garey and David S. Johnson

P vs. NP, Lecture 17 29

Data Structure

1

2

3

4

5

6

7

2
1

2 3

4 5

6

7

3

3 7 4 1

1 5 7 2

5 6 2 7

6 4 7 3

5 4

3 5 4 2

Path 1

P vs. NP, Lecture 17 30

Data Structure

1

2

3

4

5

6

7

1

2 3

4 5

6

7

7 4

5 7

5 6 2 7

6 4 7 3

5 4

3 5 4 2

Path 1 2 3 1 Time = O(n+e)

