
9/28/2011

1

Most people find the concept of programming obvious, but the doing impossible.

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

Autumn 2011

Alan Perlis  Epigrams 

To understand a program you must become both the machine and the program.

It is easier to write an incorrect program than understand a correct one.

There are two ways to write error-free programs; only the third one works.

It is easier to change the specification to fit the program than vice versa.

Who are we?

CSE 331 Autumn 2011

2

Staff Students

Women 12

Men 43

Sophomores 7

Juniors 30

Seniors 18

CS major 33

CompE major 15

Other major 7

Women 3

Men 1

Undergraduate students 1

Graduate students 1

Alumni 1

Faculty 1

Beards 1

No beards 3

Only three with any 400-level CSE courses

Two goals of software system building
Barry Boehm 

 Building the right system

 Does the program meet the

users’ needs?

 Determining if this is true is

usually called validation

 Building the system right

 Does the program meet the

specification?

 Determining if this is true is

usually called verification

In CSE331, the second goal

is the focus – that is, we

focus (almost) only on

creating a correctly

functioning artifact

It can be surprisingly

hard to specify, design,

implement, test, debug

and maintain even a

simple program

CSE 331 Autumn 2011

3

“Does the program meet the specification?”

CSE 331 Autumn 2011

4

 You know what a program is – we’ll focus on Java
programs, but the ideas are much more general

 What is a specification?

 “a detailed description or assessment of requirements,
dimensions, materials, etc., as of a proposed building,
machine, bridge, etc.” [Dictionary.com Unabridged. Retrieved May 25, 2011]

 It’s the basis for a contract: “if you build something that does
X [then we will ‘pay you $19.55,’ ‘give you a 4.0,’ etc.]” – X
is the specification, defining how we can tell if something
(for us, a program) meets the specification

 Ambiguity in specifications is common, often inadvertent,
sometimes necessary, and keeps lawyers wealthy

A familiar kind of specification
5

Another familiar kind of spec
A CSE 143 assignment

CSE 331 Autumn 2011

6

// Interface Queue defines a set of operations for manipulating a FIFO
// (First In First Out) structure that can be used to store elements
// of type E.

public interface Queue<E> {

 // post: given value inserted at the end of the queue
 public void enqueue(E value);

// pre : !isEmpty()
// post: removes and returns the value at the front of the queue

 public E dequeue();

 // post: returns true if the queue is empty, false otherwise
 public boolean isEmpty();

 // post: returns the current number of elements in the queue
 public int size();

}

• pre-condition holds

before execution

• post-condition

holds after

execution

http://www.cs.yale.edu/quotes.html
http://en.wikipedia.org/wiki/Alan_Perlis
http://www.cs.yale.edu/quotes.html
http://en.wikipedia.org/wiki/Barry_Boehm
http://dictionary.reference.com/browse/specification
http://www.cs.washington.edu/education/courses/cse143/11sp/homework/Queue.java

9/28/2011

2

Specification Jeopardy: Hello World

public static void main(String[] args) {

 System.out.println("Hello, World");

}

 Prints “Hello, World”

 Prints “Hello, World”

without quotation

marks

 Prints any string

starting with “H”

 Prints any string with

12 characters in it

 Does anything

 Does anything as

long as it terminates

 …

CSE 331 Autumn 2011

7

• Every program meets (we’ll usually say satisfies) an

unbounded number of specifications

• It can be tricky to accurately specify the “right”

amount of information – it takes experience

This and many later code examples will be partial – in this case,

the class is omitted – but the full context should be clear.

Specification Jeopardy: Double

 // post: prints twice the first input argument

 // post: prints any integer

 // pre: input argument  0

// post: prints any non-negative integer

 // post: prints twice the first input argument OR

 throws java.lang.NumberFormatException

 // pre: input argument * 2 ≤ java.lang.integer.MAX_VALUE

// post: prints twice the first input argument

 // post: if input argument * 2 ≤ java.lang.integer.MAX_VALUE

// prints twice the first input argument otherwise

// throws java.lang.NumberFormatException

 …don’t forget MIN_VALUE …
CSE 331 Autumn 2011

8

public static void main(String[] args) {

 System.out.print(Integer.parseInt(args[0])*2);

}

And more

 // … no input argument?

 Should it throw java.lang.ArrayIndexOutOfBoundsException

 // … non-integer input argument?

 Should it throw java.lang.NumberFormatException

 // … more than one input argument?

CSE 331 Autumn 2011

9

public static void main(String[] args) {

 System.out.print(Integer.parseInt(args[0])*2);

}

• Again, it’s tricky, requiring careful case analysis – imaginable inputs? desired

outputs? what is really intended? how is it intended to be used? … ?

• And, again, it takes experience (which should not be mistaken for intelligence)

Specifications: Q&A instead of A&Q

CSE 331 Autumn 2011

10

 Is it easier to simply write down specifications

before the program exists?

 What would a post-condition be for a method that

sorts an integer array of length N in non-decreasing

order?

 How do you precisely describe when an array is

sorted?

In small groups, spend 2-3 minutes sketching a

sorting post-condition (any syntax is OK)

A flaw

CSE 331 Autumn 2011

11

 Most groups probably found a post-condition like

 That is, for any two elements in the array, the one with the lower
index must not be greater than the one with the higher index

 But “undesired” satisfying programs are also allowed

 Sorting means reordering the original elements, not simply
creating a sorted array

 So, we need to add a clause to the post-condition that says

i,j[0,N-1]  i<j  A[i]  A[j]

for(int i=0; i<N; i++){

 A[i] := i;

}

A is a permutation of A_orig

“Incomplete” specifications: sqrt

CSE 331 Autumn 2011

12

 double sqrt(double x, double epsilon)

pre: x  0

post: abs(return*return–x) < epsilon

 Perhaps this is the desired specification; perhaps not

 What would sqrt(81.0d,0.001d)return?

 Might want the positive square root to be returned

 Or might want a non-deterministic specification that

 allows a satisfying program to return different values for

different invocations or

 allows different satisfying programs to return different

values

9/28/2011

3

Getting to “correct”

CSE 331 Autumn 2011

13

 There is no precise notion of a “correct” specification

 However, there can be incorrect specifications – ones that
cannot be implemented, ones that are inconsistent, and ones
that are just bad …

 This is really a validation question, “Does the
specification meet the needs of the users?”

 This is because there is no precise way to assess user
needs – although there is a lot known about this, it is far
beyond what we can cover in 331

 So we will focus on a precise notion – does a given
program (implementation) satisfy a given specification?

Why is writing satisfying programs hard?

14

 Many ways to satisfy a specification –

have to find and choose a “good”

way?

 “Goodness” is an ill-defined mix of customer

needs, business needs, technologies, etc.

 Software systems are complex

 Many difficult decisions and structures

 Requires teams that effectively communicate

and coordinate

 Customer needs evolve

 Programs must change to meet spec changes

 …and more, much more…!

“Software entities are more

complex for their size than

perhaps any other human

construct, because no two parts

are alike… If they are, we make

the two similar parts into one... In

this respect software systems

differ profoundly from computers,

buildings, or automobiles, where

repeated elements abound.” Fred

Brooks  "No Silver Bullet —

Essence and Accidents of Software

Engineering". IEEE Computer 20 (4):

10–19 (1987) 

The Tao (道) of CSE331

CSE142/143

Programming (in Java)

• Control (loops, conditionals,

methods, parameter passing,

recursion, etc.)

• Variables

• Abstract data types (ADTs):

• Stacks, linked lists, …

• Interfaces, inheritance and

encapsulation

• Basics of complexity and

performance tradeoffs

• Using off-the-shelf components

from Java Collections

CSE331

Designing and implementing more realistic

software (in Java, but more general)

• Abstraction and specification

• Writing, understanding and reasoning

about code

• Program design and documentation:

process and tools

• What makes a design good or bad?

• Pragmatic considerations

• Testing

• Debugging and defensive programming

• Software management issues

15

CSE 331 Autumn 2011

An observation

 Some of you are eyeballing others,

worrying that “they know stuff I don’t know”

 This is likely true but

 You also know stuff they don’t and

 Nobody was born knowing about Java generics
or version control or Eclipse or such … everybody
(who knows it) had to learn it sometime

 See Medieval Helpdesk video …

watch it on your own 2:46 minutes!

CSE 331 Autumn 2011

16

“Open it? If it’s that simple,

I wouldn’t have called

helpdesk, would I?”

“Have you read the

manual?”

“But this has the same

problem. I can’t seem to

open it.”

If you are having trouble…

 “Ask” yourself what’s going on –
programming by permutation rarely
succeeds, so think first!

 Look for information – it can be hard,
but learning how to do this effectively is
a great investment

 Ask others for help – course staff,
friends, students in the class, etc.

 The one epic fail is to stay stuck on
something for a long time

CSE 331 Autumn 2011

17

In one of my first jobs, I had
some bugs I simply couldn’t
find. After far too many
hours (days), the president of
the company sat me down
and said, “OK, David, tell
me why these bugs can’t
happen.” I found them really
quickly!

DON’T DO THIS! Really.

I’m totally serious. Really.

Performance

 How fast a program
runs can be
important – and we
may at times talk
about performance

 But it is not even
close to the primary
focus of 331 –
correctness is much
more important

 These quotations
about performance
are from people
with extraordinary
experience and
insight

Michael Jackson 

Rule 1: Don't do it.

Rule 2 (for experts only): Don't do it yet.

Bill Wulf 

More computing sins are committed in the name

of efficiency (without necessarily achieving it)

than for any other single reason – including blind

stupidity.

Don Knuth 

We should forget about small efficiencies, say

about 97% of the time: premature optimization

is the root of all evil.

CSE 331 Autumn 2011

18

http://en.wikipedia.org/wiki/Fred_Brooks
http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663532
http://www.youtube.com/watch?v=pQHX-SjgQvQ
http://www.strayac.com/2008/08/24-week/
http://globalovethinktank.blogspot.com/2010_04_01_archive.html
http://en.wikipedia.org/wiki/Michael_A._Jackson
http://en.wikipedia.org/wiki/William_Wulf
http://en.wikipedia.org/wiki/Don_Knuth

9/28/2011

4

An old conversation, oft-repeated

CSE 331 Autumn 2011

19

But it’s fast!

You lost points

because the

program isn’t

correct

If it doesn’t have

to be correct, I can

write a much

faster program!
Extra credit if you can identify

either or both of these people

Prerequisite: Java at the 142/143 level

Examples

CSE 331 Autumn 2011

20

 Sharing

 Distinction between == and equals()

 Are two objects the same object, or do they have equal values?

 And what does “equal” mean?

 Aliasing (multiple references to the same object)

 Subtyping

 Varieties: classes, interfaces

 Inheritance and overriding

 Object-oriented dispatch

 Expressions have a compile-time type

 Objects/values have a run-time type

 The first two assignments will largely focus on making sure
you’re (back) up to speed on this kind of material

Logistics

CSE 331 Autumn 2011

21

 http://www.cs.washington.edu/cse331

 There’s useful information in there … if you can’t find

what you’re looking for, make sure to ask!

 Especially the calendar
http://www.cs.washington.edu/education/courses/cse331/11au/calendar/calendar.html

 We’ll also be using piazza.com for information and

Q&A threads, etc.

 And Catalyst as well, although not for posting

Collaboration policy

CSE 331 Autumn 2011

22

 Discussion is permitted … indeed, encouraged!

 Representing someone else’s work as your own is not permitted

 Familiarize yourselves with the CSE, COE and UW policies on
academic honesty – we rely on them heavily – we will pursue
cases of academic dishonesty

 If you have a question about what is allowed, ask!

 Please apply the Gilligan’s rule

 if you watch mindless TV (Hulu?) for 30-60 minutes after a discussion
with classmates, and

 you can still reproduce the materials from memory (no notes, no email,
etc.), then

 you can consider it your work/knowledge

 Loopholes are not loopholes – spirit of the law applies over the
letter of the law

Next steps

CSE 331 Autumn 2011

23

 Assignment 0: on the web now, due Friday 11:59PM

 Objective: get your Java environment configured and running, get a couple
of tiny Java programs running, a survey, etc.

 Warning: this can be quite complicated, with different operating systems
(variants of Linux, Windows, Mac OS), different versions of Java, different
versions of Eclipse, and more – we have some expertise, but sometimes it’s hard
for us, too

 Sections tomorrow: in the lab, with the staff there, bouncing from
student-to-student to help you do this

 TODAY: Make sure you can login to UW CSE machines! Both Linux and
Windows (which can have different passwords!)

 Forgot CSENetID? Email support@cs (they reset it, you retrieve it at reception)

 Forgot Windows password (but remember CSENetID)? Click here

 Assignment 1: on the web before Friday lecture; due next
Wednesday 11:59PM

 Lectures: Specifications (F), testing/JUnit (M), equality (W)

http://www.cs.washington.edu/cse331
http://www.cs.washington.edu/education/courses/cse331/11au/calendar/calendar.html
http://www.cs.washington.edu/education/courses/cse331/11au/calendar/calendar.html
piazza.com
https://weblogin.cs.washington.edu/kpasswd

