
9/30/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

SPECIFICATIONS

Autumn 2011

Dogs must

be carried

Shoes must

be worn

Michael Jackson

The challenge of scaling software

 Small programs tend to be
simple and malleable:
relatively easy to write and to
change

 Big programs tend to be
complex and inflexible: harder
to write and (much) harder to
change

 Why? In large part because
interactions become harder to
understand and to manage

 We will try to reduce this
challenge by using
specifications to simplify and
manage these interactions

Package P

Class A

Method x Method y

Class B

Method z

More classes,

more methods,

more calls, more

generics, more

imports, more

inherits, more

libraries, more

static and

private and

public, …
CSE 331 Autumn 2011

2

 A specification is a contract

 A set of obligations agreed to by the user (client) and
the manufacturer (implementer) of the product

 Facilitates simplicity by two-way isolation

 Isolate client from implementation details

 Isolate implementer from how the part is used

 Discourages implicit, unwritten expectations

 Facilitates change

 Allows either side to make changes that respect the
specification

 An effective specification changes very little (at most),
allowing the code (on both sides) to be more malleable

CSE 331 Autumn 2011

3

Different but dualistic roles
Implementers vs. Clients

CSE 331 Autumn 2011

4

S
p
e
ci

fi
ca

ti
o
n

 public interface Queue<E> {

 // post: given value inserted at the end of the queue
 public void enqueue(E value);

// pre : !isEmpty()
// post: removes and returns the value at the
front of the queue

 public E dequeue();

 // post: returns true if the queue is empty, false

otherwise
 public boolean isEmpty();

 // post: returns the current number of elements in the
queue
 public int size();

}

Client code:

must depend

only on

specification

public E dequeue();

 // post: returns true if the queue is empty, false
otherwise
 public boolean isEmpty();

public interface Queue<E> {

 // post: given value inserted at the end of the queue
 public void enqueue(E value);

// pre : !isEmpty()
// post: removes and returns the value at the
front of the queue

 // post: returns the current number of elements in the
queue
 public int size();

} public interface Queue<E> {

 // post: given value inserted at the end of the queue
 public void enqueue(E value);

// pre : !isEmpty()
// post: removes and returns the value at the
front of the queue

Implementation:

only must satisfy

specification

Respecting the specification has value

CSE 331 Autumn 2011

5

If an implementation

focuses on the needs

of a specific client

rather than only

ensuring that the

specification is

satisfied, what

happens to other

clients? To the

implementation itself?

If a client uses

properties of the

implementation that

are not part of the

specification, what

happens if the

implementation

changes those

properties?

S
p
e
ci

fi
ca

ti
o
n

You play both roles

CSE 331 Autumn 2011

6

 Not only in 331, but

commonly in your career

 By reducing how much

you and your dualistic

“alter ego” know about

each others’ view, the

interactions can be kept

cleaner

 This is hard!

Leading towards

“Truth, Justice

and the 331 Way”

http://mcs.open.ac.uk/mj665/
http://itsayogathang.blogspot.com/2009/12/best-thing-i-learned-in-2009.html
http://flyingcolorscomics.blogspot.com/2006_09_01_archive.html

9/30/2011

2

Isn’t the interface a specification?

 Java (and most languages) allow programs to define interfaces as a
boundary between the implementations and the clients

public interface List<E> {

 public int get(int);

 public void set(int, E);

 public void add(E);

 public void add(int, E);

 …

 public static boolean sub(List<T>, List<T>);

}

 The interface is a weak kind of specification that provides the
syntax, but nothing about the behavior and the effects

 This kind of contract says, “I’ll give you this and you’ll give me that,
but ‘this’ and ‘that’ aren’t carefully defined”

CSE 331 Autumn 2011

7

Why not just read code?

CSE 331 Autumn 2011

8

T boolean sub(List<T> src, List<T> part) {

 int part_index = 0;

 for (T elt : src) {

 if (elt.equals(part.get(part_index))) {

 part_index++;

 if (part_index == part.size()) {

 return true;

 }

 }

 else {

 part_index = 0;

 }

 }

 return false;

}

In small groups, spend 1-2 minutes listing

reasons why reading code would be a poor

substitute for having a specification

Code is complicated

CSE 331 Autumn 2011

9

 Much detail not needed by client – understanding
every line of code is excessive and impractical

 Ex: Read all source code of Java libraries before using
them?

 Client should care only what is in the specification,
not what is in the code

 When a client sees the implementation code,
subconscious dependencies arise and may be exploited

 Why is this bad?

 Why should you be especially concerned about this?

Why not just run code?

CSE 331 Autumn 2011

10

 The client depends on what the implementation
computes – what better way to find out than by seeing
what it computes?

 If you run enough test inputs, you are forming a partial
specification

 Ex: from many standardized tests

 “What is next in this sequence: 2, 4, 6, 8 …?”

 “What is next in this sequence: 100, 50, 25, 76, 38, 19, 58, 29,
88, …?”

 Problems with this approach are similar to those shown
in the 1st lecture via specification jeopardy

An old Drabble cartoon: “Too easy!!! It’s ‘Who

do we appreciate?’”

Which code details are essential?

CSE 331 Autumn 2011

11

 A lot of choices are made in writing code – some are essential while
others are incidental – but which is which?

 Internal variable names? Algorithms used? Resource consumption
(time, space, bandwidth, etc.)? Documentation? Etc.?

 Code invariably gets rewritten, making the distinction between
essential and incidental crucial

 What properties can the client rely on over time? Which
properties must the implementer preserve for the client’s code to
work? Future optimizations, improved algorithms, bug fixes, etc.?

 Alternatively, what properties might the implementation change
that would break the client code?

 There is no simple definition of this distinction, but it is captured in
practice in every specification – again, your sensibilities about this
issue with grow over time

Comments
With more comments on comments later on

CSE 331 Autumn 2011

12

 Comments can, and do, provide value if and when
written carefully – and when kept up-to-date

 Many comments convey only an informal, general idea
of what that the code does

// This method checks if “part” appears as a

// sub-sequence in “src”

 boolean sub(List<?> src, List<?> part) {

...

 }

 This usually leaves ambiguity – for example, what if src
and part are both empty lists?

9/30/2011

3

Improving the spec of sub()

CSE 331 Autumn 2011

13

// Check whether “part” appears as a sub-sequence in “src”

 Needs additional clarification

 // a) src and part cannot be null

 // b) If src is empty list, always returns false

 // c) Results may be unexpected if partial matches can happen

 // right before a real match; e.g., list (1,2,1,3) will not

 // be identified as a sub sequence of (1,2,1,2,1,3)

 Or needs to be replaced with a more detailed description

 // This method scans the “src” list from beginning to end,

 // building up a match for “part”, and resetting that match

 // every time that...

Further improving the spec of sub()

CSE 331 Autumn 2011

14

 A complicated description suggests poor design and rarely
clarifies a specification

 Try to simplify rather than describe complexity

 Perlis: Simplicity does not precede complexity, but follows it.”

 Rewrite the specification of sub() more clearly and sensibly

 The “declarative” style of this specification is important
 Contrast to an operational style such as “This method scans
the “src” list from beginning to end…”

 The mathematical flavor is not necessary, but it can help reduce
ambiguity

// returns true iff sequences A, B exist such that
// src = A : part : B [“:” is sequence concatenation]

Examples of specifications

CSE 331 Autumn 2011

15

 Javadoc “is a tool for generating API documentation in

HTML format from doc comments in source code.”

 Get used to using it

 Javadoc conventions expect programs to provide

 method prototype – basically, the name of the method and

the types of the parameters and of the return

 text description of method

 @param: description of what gets passed in

 @returns: description of what gets returned

 @throws: list of exceptions that may occur

Example: Javadoc for String.contains

CSE 331 Autumn 2011

16

 tags in Java comments

 These are parsed and formatted by Javadoc

 Viewable in web browsers

/**
* Returns true if and only if this string contains the specified
* sequence of char values.
*
* @param s the sequence to search for
* @return true if this string contains <code>s</code>, false otherwise
* @throws NullPointerException if <code>s</code> is <code>null</code>
* @since 1.5
*/
public boolean contains(CharSequence s) {
 return indexOf(s.toString()) > -1;
}

public boolean contains(CharSequence s)

Returns true if and only if this string contains the
specified sequence of char values.

Parameters:

 s- the sequence to search for

Returns:

 true if this string contains s, false otherwise

Throws:

 NullPointerException

Since:

 1.5

CSE 331 specifications
(Javadoc is extensible)

CSE 331 Autumn 2011

17

 The precondition: constraints that hold before the
method is called
 requires: spells out any obligations on client (if requires is

not satisfied by a client, the implementation is unconstrained)

 The postcondition: constraints that hold after the
method is called (if the precondition held)

 modifies: lists objects that may be affected by method; any
object not listed is guaranteed to be untouched

 throws: lists possible exceptions

 effects: gives guarantees on the final state of modified
objects

 returns: describes return value

Ex 1: Spec and an implementation
18

static int test(List<T> lst, T oldelt, T newelt)
 requires lst, oldelt, and newelt are non-null
 oldelt occurs in lst
 modifies lst
 effects change the first occurrence of oldelt in lst to newelt
 no other changes to lst
 returns position of element in lst that was oldelt and is now newelt

static int test(List<T> lst, T oldelt, T newelt) {

 int i = 0;

 for (T curr : lst) {

 if (curr == oldelt) {

 lst.set(newelt, i);

 return i;

 }

 i = i + 1;

 }

 return -1;

}

CSE 331 Autumn 2011

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/NullPointerException.html

9/30/2011

4

Ex 2: Spec and an implementation
19

static List<Integer> listAdd(List<Integer> lst1, List<Integer> lst2)
 requires lst1 and lst2 are non-null
 lst1 and lst2 are the same size
 modifies none
 effects none
 returns a list of same size where the ith element is the sum of the
 ith elements of lst1 and lst2

static List<Integer> listAdd(List<Integer> lst1,

 List<Integer> lst2) {

 List<Integer> res = new ArrayList<Integer>();

 for(int i = 0; i < lst1.size(); i++) {

 res.add(lst1.get(i) + lst2.get(i));

 }

 return res;

}

CSE 331 Autumn 2011

Ex 3: Spec and an implementation
20

static void listAdd2(List<Integer> lst1, List<Integer> lst2)
 requires lst1 and lst2 are non-null
 lst1 and lst2 are the same size
 modifies lst1
 effects ith element of lst2 is added to the ith element of lst1
 returns none

static void listAdd2(List<Integer> lst1, List<Integer> lst2) {

 for (int i = 0; i < lst1.size(); i++) {

 lst1.set(i, lst1.get(i) + lst2.get(i));

 }

}

CSE 331 Autumn 2011

Ex 4: Spec and an implementation

CSE 331 Autumn 2011

21

static void uniquify(List<Integer> lst)
 requires ???
 modifies ???
 effects ???
 returns ???

static void uniquify(List<Integer> lst) {

 for (int i=0; i < lst.size()-1; i++)

 if (lst.get(i) == lst.get(i+1))

 lst.remove(i);

}

In small groups, spend 1-2 minutes filling in the ???

in the specification above

Ex: java.util.Arrays.binarySearch

CSE 331 Autumn 2011

22

public static int binarySearch(int[] a,int key)

Searches the specified array of ints for the specified value
using the binary search algorithm. The array must be sorted
(as by the sort method, above) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no
guarantee which one will be found.
Parameters:
 a- the array to be searched.
 key- the value to be searched for.
Returns:
 index of the search key, if it is contained in the list;
 otherwise, (-(insertion point) - 1).

[…long description…]

Improved specification

CSE 331 Autumn 2011

23

public static int binarySearch(int[] a,int key)

requires: a is sorted in ascending order
returns:
 some i such that a[i] = key if such an i exists,
 otherwise -1

• Returning (-(insertion point)-1) is an invitation to bugs

and confusion

• Consider: The designers had a reason; what was it, and

what are the alternatives?

• We'll return to the topic of exceptions and special values in a

later lecture

Summary

CSE 331 Autumn 2011

24

 Properties of a specification

 The client relies only on the specification and on nothing

(else) from the implementation

 The implementer provides everything in the specification

and is otherwise unconstrained

 Overall, effective use of specifications leads to

simpler and more flexible programs that have

fewer bugs and cleaner dependencies

9/30/2011

5

Next steps

CSE 331 Autumn 2011

25

 Assignment 0

 Due today 11:59PM

 Assignment 1

 out later today

 due Wednesday (10/5) 11:59PM

 Assignment 2

 out Wednesday (10/5)

 due in two parts

 part A on Friday (10/7) 11:59PM

 part B the following Wednesday (10/12) at 11:59PM

 Lectures

 Testing and Junit (M)

 Equality (W)

 Abstract data types I (F)

 Abstract data types II (M)

