
1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

SOFTWARE TESTING

Autumn 2011

Creative Commons Attribution-Share Alike 3.0 Unported License from

http://tvtropes.org/pmwiki/pmwiki.php/Main/FoxChickenGrainPuzzle

Testing

 “[T]he means by which the presence, quality, or genuineness of
anything is determined; a means of trial.” –dictionary.com

 A software test executes a program to determine whether a
property of the program holds or doesn’t hold

 A test passes [fails] if the property holds [doesn’t hold] on that
run

 A test suite – a set of systematically-designed software tests –
executes a program to increase confidence about whether
specific properties of the program hold or don’t hold

 The collection of passed and failed tests as a whole
provides information beyond each individual test

 Just as the result of a single coin flip tells little about
fairness while a longer sequence can tell more

CSE 331 Autumn 2011

2

Software Quality Assurance (QA)
Testing plus other activities including

 Static analysis (assessing code without executing it)

 Proofs of correctness (theorems about program

properties)

 Code reviews (people reviewing others’ code)

 Software process (placing structure on the

development lifecycle)

 …and many more ways to find problems and to

increase confidence

No single activity or approach

can guarantee software quality CSE 331 Autumn 2011

3

Kinds of Testing

 Unit Testing: does each unit (class,

method, etc.) do what it supposed to

do?

 Integration Testing: do you get the

expected results when the parts are

put together?

 Validation Testing: does the program

satisfy the requirements?

 System Testing: does it work within

the overall system?

Today

 Absolute basics of unit testing,

which is our primary focus in

331, using RandomHello as

an example

 Some examples of JUnit – a

Java unit testing mechanism

that is nicely integrated into

Eclipse

 Later lectures: more on testing

Some other testing buzzwords: alpha, beta, fuzz, random, mutation, symbolic, black &

white box, coverage (statement/edge/path), model-based … and many more …
CSE 331 Autumn 2011

4

Black box

Must choose inputs without

knowledge of the implementation

Unit testing

A. Choose input data (“test inputs”)

B. Define the expected outcome (“oracle”)

C. Run the unit (“SUT” or “software under test”) on the input and

record the results

D. Examine results against the oracle

=oracle?

Specification
Precondition Postcondition

Implementation

White box

Can choose inputs with knowledge

of the implementation

5

Black box

Must choose inputs without

knowledge of the implementation

It’s not black-and-white, but…

White box

Can choose inputs with knowledge

of the implementation

6

 Has to focus on the

behavior of the SUT

 Needs an oracle

 Or at least an

expectation of whether

or not an exception is

thrown

 Black-box++

 Common use: coverage

 Basic idea: if your test

suite never causes a

statement to be executed,

then that statement might

be buggy

http://tvtropes.org/pmwiki/pmwiki.php/Main/FoxChickenGrainPuzzle
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://tvtropes.org/pmwiki/pmwiki.php/Main/FoxChickenGrainPuzzle
http://www.dna.gov/training/evidence
http://randomoverload.com/driving-test-fail
dictionary.com

2

sqrt example

// throws: IllegalArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)

What are some values or ranges of x

that might be worth testing

 x < 0 (exception thrown)

 x ≥ 0 (returns normally)

 around x = 0 (boundary condition)

 perfect squares (sqrt(x) an integer), non-perfect squares

 x < sqrt(x), x > sqrt(x)

 Specific tests: say x = {-1, 0, 0.5, 1, 4} CSE 331 Autumn 2011

7

Subdomains

 Many executions reflect the same behavior – for
sqrt, for example, the expectation is that

 all x < 0 inputs will throw an exception

 all x ≥ 0 inputs will return normally with a correct
answer

 By testing any element from each subdomain, the
intention is for the single test to represent the other
behaviors of the subdomain – without testing them!

 Of course, this isn’t so easy – even in the simple
example above, what about when x overflows?

CSE 331 Autumn 2011

8

Testing RandomHello

 “Create your first Java class with a main method that will

randomly choose, and then print to the console, one of five

possible greetings that you define.”

 We’ll focus on the method getGreeting, which

randomly returns one of the five greetings

 We’ll focus on black-box testing – we will work with no

knowledge of the implementation

 And we’ll focus on unit testing using the JUnit framework

 Intermixing, with any luck, slides and a demo

CSE 331 Autumn 2011

9

Does it even run and return?

 If getGreeting doesn’t run and return without throwing an

exception, it cannot meet the specification

JUnit tag “this is a test” @Test

name of test public void test_NoException(){

Run getGreeting RandomHello.getGreeting();

JUnit “test passed” (doesn’t

execute if exception thrown)

 assertTrue(true);

}

A unit test is a (stylized) program!

When you’re writing unit tests (and

many other tests), you’re

programming!

CSE 331 Autumn 2011

10

Tests should have

descriptive (often very

long) names

Running JUnit tests

 There are many ways to run JUnit

test method, test classes, and test

suites

 Generally, select the method, class or

suite and Run As >> JUnit Test

 A green bar says “all tests pass”

 A red bar says at least one test

failed or was in error

 The failure trace shows which tests

failed and why

• A failure is when the test

doesn’t pass – that is,

the oracle it computes is

incorrect

• An error is when

something goes wrong

with the program that

the test didn’t check for

(e.g., a null pointer

exception) CSE 331 Autumn 2011

11

Does it return one of the greetings?

 If it doesn’t return one of the defined greetings, it cannot

satisfy the specification

@Test

public void testDoes_getGreeting_returnDefinedGreeting() {

 String rg = RandomHello.getGreeting();

 for (String s : RandomHello.greetings) {

 if (rg.equals(s)) {

 assertTrue(true);

 return;

 }

 }

 fail("Returned greeting not in greetings array");

}

CSE 331 Autumn 2011

12

3

A JUnit test class

import org.junit.*;

import static org.junit.Assert.*;

public class RandomHelloTest() {

 @Test

 public void test_ReturnDefinedGreeting() {

 …

 }

 @Test

 public void test_EveryGreetingReturned() {

 …

 }

 …

}

Don’t forget that Eclipse

can help you get the right

import statements – use

Organize Imports

(Ctrl-Shift-O)

 All @Test methods run

when the test class is run

 That is, a JUnit test class

is a set of tests (methods)

that share a (class) name
CSE 331 Autumn 2011

13

Does it return a random greeting?

@Test

public void testDoes_getGreetingNeverReturnSomeGreeting() {

 int greetingCount = RandomHello.greetings.length;

 int count[] = new int[greetingCount];

 for (int c = 0; c < greetingCount; c++)

 count[c] = 0;

 for (int i = 1; i < 100; i++) {

 String rs = RandomHello.getGreeting();

 for (int j = 0; j < greetingCount; j++)

 if (rs.equals(RandomHello.greetings[j]))

 count[j]++;

 }

 for (int j = 0; j < greetingCount; j++)

 if (count[j] == 0)

 fail(j+"th [0-4] greeting never returned");

 assertTrue(true);

}

Run it 100

times

If even one

greeting is

never

returned, it’s

unlikely to be

random (1-

0.8100)
CSE 331 Autumn 2011

14

What about a sleazy developer?

if (randomGenerator.nextInt(2) == 0) {

 return(greetings[0]);

} else

 return(greetings[randomGenerator.nextInt(5)]);

 Flip a coin and select either a random or a specific greeting

 The previous “is it random?” test will almost always pass given this

implementation

 But it doesn’t satisfy the specification, since it’s not a random choice

CSE 331 Autumn 2011

15

Instead: Use simple statistics

@Test

public void test_UniformGreetingDistribution() {

 // …count frequencies of messages returned, as in

 // …previous test (test_EveryGreetingReturned)

 float chiSquared = 0f;

 float expected = 20f;

 for (int i = 0; i < greetingCount; i++)

 chiSquared = chiSquared +

 ((count[i]-expected)*

 (count[i]-expected))

 /expected;

 if (chiSquared > 13.277) // df 4, pvalue .01

 fail("Too much variance");

}

CSE 331 Autumn 2011

16

A JUnit test suite

import org.junit.runner.RunWith;

import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({

 RandomHelloTest.class,

 SleazyRandomHelloTest.class

})

public class AllTests {

 // this class remains completely

 // empty, being used only as a

 // holder for the above

 // annotations

}

 Define one suite for each

program (for now)

 The suite allows multiple

test classes – each of

which has its own set of

@Test methods – to be

defined and run together

 Add tc.class to the
@Suite.SuiteClasses

annotation if you add a

new test class named tc

 So, a JUnit test suite is a

set of test classes (which

makes it a set of a set of

test methods) CSE 331 Autumn 2011

17

JUnit assertion methods

 Can add a failure message: assertNull(“Ptr isn’t null", value)

 expected is the oracle – remember this is the first (leftmost) param

 The table above only describes when to fail – what happens if an

assertion succeeds? Does the test pass?

…causes the current test to fail…
fail() immediately

assertTrue(tst) if tst is false

assertFalse(tst) if test is true

assertEquals(expected, actual) if expected does not equal actual

assertSame(expected, actual) if expected != actual

assertNotSame(expected, actual) if oracle == actual

assertNull(value) if value is not null

assertNotNull(value) if value is null

CSE 331 Autumn 2011

18

4

 High-level concept: test behaviors in combination

 Maybe add works when called once, but not when call twice

 Maybe add works by itself, but fails (or causes a failure) after calling remove

ArrayIntList: example tests

@Test

public void testAddGet1() {

 ArrayIntList list = new

 ArrayIntList();

 list.add(42);

 list.add(-3);

 list.add(15);

 assertEquals(42, list.get(0));

 assertEquals(-3, list.get(1));

 assertEquals(15, list.get(2));

}

@Test

public void testIsEmpty() {

 ArrayIntList list = new

 ArrayIntList();

 assertTrue(list.isEmpty());

 list.add(123);

 assertFalse(list.isEmpty());

 list.remove(0);

 assertTrue(list.isEmpty());

}

CSE 331 Autumn 2011

19

A few hints: data structures

 Need to pass lots of arrays? Use array literals
public void exampleMethod(int[] values) { ... }

...

exampleMethod(new int[] {1, 2, 3, 4});

exampleMethod(new int[] {5, 6, 7});

 Need a quick ArrayList?
List<Integer> list = Arrays.asList(7, 4, -2, 3, 9, 18);

 Need a quick set, queue, etc.? Many take a list
Set<Integer> list = new HashSet<Integer>(

 Arrays.asList(7, 4, -2, 9));

CSE 331 Autumn 2011

20

A few general hints

 Test one thing at a time per test method

 10 small tests are much better than one large test

 Be stingy with assert statements

 The first assert that fails stops the test – provides no

information about whether a later assertion would

have failed

 Be stingy with logic

 Avoid try/catch – if it’s supposed to throw an

exception, use expected= ... if not, let JUnit catch it

CSE 331 Autumn 2011

21

Test case dangers

 Dependent test order

 If running Test A before Test B gives different results

from running Test B then Test A, then something is likely

confusing and should be made explicit

 Mutable shared state

 Tests A and B both use a shared object – if A breaks

the object, what happens to B?

 This is a form of dependent test order

 We will explicitly talk about invariants over data

representations and testing if the invariants are ever broken

CSE 331 Autumn 2011

22

More JUnit (but not in detail today)

 Timeouts – don’t want to wait forever for a test to

complete

 Testing for exceptions
@Test(expected = ArrayIndexOutOfBoundsException.class)

public void testBadIndex() {

 ArrayIntList list = new ArrayIntList();

 list.get(4); // this should raise the exception

} // and thus the test will pass

 Setup [teardown] – methods to run before [after]
each test case method [test class] is called

 CSE 331 Autumn 2011

23

One view of testing

Testing by itself does not improve software quality. Test results

are an indicator of quality, but in and of themselves, they don't

improve it. Trying to improve software quality by increasing the

amount of testing is like trying to lose weight by weighing

yourself more often. What you eat before you step onto the

scale determines how much you will weigh, and the software

development techniques you use determine how many errors

testing will find. If you want to lose weight, don't buy a new

scale; change your diet. If you want to improve your software,

don't test more; develop better.

Steven C McConnell  Code Complete: A Practical Handbook of

Software Construction. ISBN: 1556154844

CSE 331 Autumn 2011

24

http://en.wikipedia.org/wiki/Steve_McConnell

5

Next steps

CSE 331 Autumn 2011

25

 Assignment 1: on the web now, due Friday 11:59PM

 Section Thursday: Javadoc, JUnit and Eclipse – in your regularly

scheduled rooms

 Lectures: equality (W), ADTs (F & M)

