D+D=0

CSE 331
SOFTWARE DESIGN & IMPLEMENTATION

Autumn 2011

Equality: hard in reality as well

0 Using DNA, which of two identical twins committed
a crime?

o “My grandfather’s axe”: after repeatedly
replacing an axe’s head and handle, is it still the
same axe?

o If you are flying next to someone on an airplane,
are you on the same flight? The same airline?

11 And then there are really hard questions like social equality, gender
equality, race equality, equal opportunity, etc.!

CSE 331 Autumn 2011

Reference equality

o1 The simplest and
strongest (most
restrictive) definition
is reference equality

o a == bif and only
if a and b refer
(point) to the same
object

o Easy to show that

this definition dl — min| 5 |sec| 3

ensures == is an

equivalence relation d2—min| 5 |sec| 3
d3 CSE 331 Autumn 2011

Programming: object equality

Em e,
01 The basic intuition is simple: two objects are equal if they are
indistinguishable (have the same value)
1 But our intuitions are incomplete in subtle ways
£ Must the objects be the same object or “just” indistinguishable?
1 What is an object’s value? How do we interpret “the bits"2
o What does it mean for two collections of objects to be equal?

= Does each need to hold the same objects? In the same order? What if
a collection contains itself2

= Who decides? The programming language designer? You?
o If a program uses inheritance, does equality change?

o Is equality always an efficient operation? Is equality temporary
or forever?

CSE 331 Autumn 2011

Properties of equality:

for qn‘ useful notion of eﬂuqlitz

0 Reflexive a.equals(a)

o3 # 3 would be confusing
0 Symmetric a.equals(b) < b.equals(a)

03 =4 A 4 # 3 would be confusing
o Transitive a.equals(b) A b.equals(c)

= a.equals(c)
0((142) = 3 A 3 = (5-2)) A
((1+2) # (5-2)) would be confusing

A relation that is reflexive, transitive, and
symmetric is an equivalence relation

Object.equals method

RS
public class Object {
public boolean equals(Object o) {
return this == o;
}
}

0 This implements reference equality

o What about the specification of object.equals?

o It's a bit more complicated...

CSE 331 Autumn 2011

public boolean equals(obj)
Indicates whether some other object is "equal to" this one. The
equals method implements an equivalence relation:
[munch — definition of equivalence relation]
It is consistent: for any reference values x and y,
multiple invocations of x.equals(y) consistently
return true or consistently return false, provided no
information used in equals comparisons on the
object is modified.
For any non-null reference value x, x.equals (null)
should return false.
The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that is,
for any reference values x and y, this method returns true if
and only if x and y refer to the same object (x==y has the
valve true). ...

[munch] Parameters & Returns & See Also

CSE 331 Autumn 2011

The Object contract

Why complicated? Because the Object class is
designed for inheritance
Its specification will apply to all subtypes — that is, all
Java subclasses — so its specification must be flexible
If a.equals (b) were specified to test a == b, then no
class could change this and still be a subtype of Object
Instead the specification gives the basic properties that
clients can rely on it to have in all subtypes of Object
Object’s implementation of equals asa ==
satisfies these properties but the specification is more
flexible

CSE 331 Autumn 2011

Comparing obijects less strictly

public class Duration {
private final int min;
private final int sec;
public Duration(int min, int sec) {

this.min = min;

this.sec = sec;

false-
but we likely
prefer it to
be true

}

Duration dl = new Duration(10,5) ;
Duration d2 = new Duration(10,5);
System.out.println(dl.equals(d2)) ;

CSE 331 Autumn 2011

An obvious improvement

public boolean equals(Duration d) {
return d.min == min && d.sec == sec;

}
This defines an equivalence relation for Duration

objects (proof by partial example and handwaving)
Duration dl1 = new Duration(10,5);

Duration d2 = new Duration(10,5);
System.out.println(dl.equals(d2)) ;

Object ol = new Duration(10,5) ; But oops
Object 02 = new Duration(10,5) ;
System.out.println(ol.equals(02)); // False!

CSE 331 Autumn 2011

overloading

Defining equals in the Duration class creates a
method that is invoked upon executing
d.equals(..) where d is a declared instance of
Duration

This co-exists with equals in the Object class that
is invoked upon executing o.equals(..) where o is
a declared instance of Object — even if it refers
to an instance of Duration

This gives two equals methods that can be invoked
on instances of Duration with different results

CSE 331 Autumn 2011

@Override equals in Duration

@QOverride // compiler warning if type mismatch
public boolean equals(Object o) {

if (! (o instanceof Duration)) // Parameter must also be

return false; // a Duration instance
Duration d = (Duration) o; // cast to treat o as
// a Duration

return d.min == min && d.sec == sec;
}
Object dl = new Duration(10,5);
Object d2 = new Duration(10,5);
System.out.println(dl.equals(d2)); // True

overriding re-defines an inherited method from a
superclass —same name & parameter list & return type

Durationsnow have to be compared as Durations (or as

Objects, but not as a mixture) CSE 331 Autumn 2011

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

Equality and inheritance
|

o1 Add a nanosecond field for fractional seconds
public class NanoDuration extends Duration {
private final int nano;
public NanoDuration(int min, int sec, int nano) {
super (min, sec);
this.nano = nano;

}
1 Inheriting equals () from Duration ignores nano

so Duration instances with different nanos will be
equal

CSE 331 Autumn 2011

Let’s get symmetry
N ——

But this is not transitive! oops!
= new NanoDuration(5,10,15) ;

Duration d2 = new Duration(5,10) ;

Duration d3 = new NanoDuration(5,10,30) ;
System.out.println(dl.equals(d2)); // true
System.out.println(d2.equals(d3)); // true
System.out.println(dl.equals(d3)); // false!

Duration dl

CSE 331 Autumn 2011

General issues
0 Every subtype must override equals — even if it
wants the identical definition

01 Take care when comparing subtypes to one another
1 On your own: Consider an ArithmeticDuration
class that adds operators but no new fields

CSE 331 Autumn 2011

equals: account for nano
R,

But this is not symmetric! Oops!
Duration dl = new NanoDuration(5,10,15) ;

Duration d2 = new Duration(5,10) ;
System.out.println(dl.equals(d2)); // false
System.out.println(d2.equals(dl)); // true

CSE 331 Autumn 2011

Replaces earlier version
if (! (o instanceof Duration))

FiX in Duration return false;

0 Check exact class instead of instanceOf

o Equivalent change in NanoDuration

CSE 331 Autumn 2011

Another solution: avoid inheritance

Em e,
o Use composition instead
public class NanoDuration {
private final Duration duration;
private final int nano;
/7 ...
}
o Now instances of NanoDuration and of Duration are
unrelated — there is no presumption that they can be equal
or unequal or even compared to one another...

o1 Solves some problems, introduces others — for example,
can't use NanoDurations where Durations are expected

(because one is not a subtype of the other)
CSE 331 Autumn 2011

Efficiency of equality

Equality tests can be slow: Are two objects with millions of sub-
objects equal? Are two video files equal?

It is often useful to quickly pre-filter — for example
if (videol.length() != video2.length())

return false
else do full equality check
Java requires each class to define a standard pre-filter — a
hashCode () method that produces a single hash value (a 32-
bit signed integer) from an instance of the class

[m}]

If two objects have different hash codes, they are guaranteed to
be different

1 If they have the same hash code, they may be equal objects and
should be checked in full

Unless you define hashCode () improperly!

CSE 331 Autumn 2011

specification for Object.hashCode

public int hashCode ()
“Returns a hash code value for the object. This method is
supported for the benefit of hashtables such as those provided by
java.uti.HashMap.”
The general contract of hashCode is
Deterministic: o.hashCode () == o.hashCode ()
...s0 long as o doesn’t change between the calls
Consistent with equality
a.equals(b) = a.hashCode()==b.hashCode ()
Change equals () 2 Must you update hashCode()?

ALMOST ALWAYS! | MEAN ALWAYS! This is a sadly common

example of the epic fail
CSE 331 Autumn 2011

Duration hashCode implementations

public int hashCode() {
return 1; // always safe, no pre-filtering

}

public int hashCode() {
return min; // safe, inefficient for Durations
// differing only in sec field
}

public int hashCode() {
return min+sec; // safe and efficient

}
public int hashCode() {

return new Random() .newInt(50000); // danger! danger!
}

CSE 331 Autumn 2011

Equality, mutation, and time

If two objects are equal now, will they always be equal?
In mathematics, “yes”
In Java, “you choose” — the Object contract doesn't specify this (but
why not?)

For immutable objects, equality is inherently forever
The object’s abstract value never changes (much more on “abstract
value” in the ADT lectures) — very roughly, these are the values the client
of a class uses (not the representation used internally)

For mutable objects, equality can either
Compare abstract values field-by-field or
Be eternal (how can a class with mutable instances have eternal
equality?)
But not both

CSE 331 Autumn 2011

Next steps

Assignment 1

Due Friday 11:59PM
Assignment 2

out Friday

due in two parts, see calendar
Lectures

Abstract data types (F, M)

CSE 331 Autumn 2011

24 CSE 331 Autumn 2011

