
1

== equals ?

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

EQUALITY

Autumn 2011

Programming: object equality

 The basic intuition is simple: two objects are equal if they are
indistinguishable (have the same value)

 But our intuitions are incomplete in subtle ways

 Must the objects be the same object or “just” indistinguishable?

 What is an object’s value? How do we interpret “the bits”?

 What does it mean for two collections of objects to be equal?

 Does each need to hold the same objects? In the same order? What if
a collection contains itself?

 Who decides? The programming language designer? You?

 If a program uses inheritance, does equality change?

 Is equality always an efficient operation? Is equality temporary
or forever?

CSE 331 Autumn 2011

2

Equality: hard in reality as well

 Using DNA, which of two identical twins committed

a crime?

 “My grandfather’s axe”: after repeatedly

replacing an axe’s head and handle, is it still the

same axe?

 If you are flying next to someone on an airplane,

are you on the same flight? The same airline?

 And then there are really hard questions like social equality, gender

equality, race equality, equal opportunity, etc.!

CSE 331 Autumn 2011

3

Properties of equality:
for any useful notion of equality

 Reflexive a.equals(a)

 3 3 would be confusing

 Symmetric a.equals(b) b.equals(a)

 3 = 4 4 3 would be confusing

 Transitive a.equals(b) b.equals(c)
 a.equals(c)

 ((1+2) = 3 3 = (5-2))
((1+2) (5-2)) would be confusing

A relation that is reflexive, transitive, and

symmetric is an equivalence relation

4

Reference equality

 The simplest and
strongest (most
restrictive) definition
is reference equality

 a == b if and only
if a and b refer
(point) to the same
object

 Easy to show that
this definition
ensures == is an
equivalence relation

Duration d1 = new Duration(5,3);

Duration d2 = new Duration(5,3);

Duration d3 = p2;

// T/F: d1 == d2 ?

// T/F: d1 == d3 ?

// T/F: d2 == d3 ?

// T/F: d1.equals(d2) ?

// T/F: d2.equals(d3) ?

min 5 sec 3

min 5 sec 3

d1

d2

d3 CSE 331 Autumn 2011

5

Object.equals method

public class Object {

 public boolean equals(Object o) {

 return this == o;

 }

}

 This implements reference equality

 What about the specification of Object.equals?

 It’s a bit more complicated…

CSE 331 Autumn 2011

6

2

public boolean equals(Object obj)
Indicates whether some other object is "equal to" this one. The
equals method implements an equivalence relation:
 [munch – definition of equivalence relation]

It is consistent: for any reference values x and y,
multiple invocations of x.equals(y) consistently
return true or consistently return false, provided no
information used in equals comparisons on the
object is modified.

For any non-null reference value x, x.equals(null)
should return false.

The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that is,
for any reference values x and y, this method returns true if
and only if x and y refer to the same object (x==y has the
value true). …

[munch] Parameters & Returns & See Also

CSE 331 Autumn 2011

The Object contract

 Why complicated? Because the Object class is
designed for inheritance

 Its specification will apply to all subtypes – that is, all
Java subclasses – so its specification must be flexible

 If a.equals(b) were specified to test a == b, then no
class could change this and still be a subtype of Object

 Instead the specification gives the basic properties that
clients can rely on it to have in all subtypes of Object

 Object’s implementation of equals as a == b

satisfies these properties but the specification is more
flexible

CSE 331 Autumn 2011

8

Comparing objects less strictly

public class Duration {

 private final int min;

 private final int sec;

 public Duration(int min, int sec) {

 this.min = min;

 this.sec = sec;

 }

}

…

Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2));

false –

but we likely

prefer it to

be true

CSE 331 Autumn 2011

9

An obvious improvement

public boolean equals(Duration d) {

 return d.min == min && d.sec == sec;

}

 This defines an equivalence relation for Duration

objects (proof by partial example and handwaving)
Duration d1 = new Duration(10,5);

Duration d2 = new Duration(10,5);

System.out.println(d1.equals(d2));

Object o1 = new Duration(10,5);

Object o2 = new Duration(10,5);

System.out.println(o1.equals(o2)); // False!

But oops

CSE 331 Autumn 2011

10

overloading

 Defining equals in the Duration class creates a
method that is invoked upon executing
d.equals(…) where d is a declared instance of
Duration

 This co-exists with equals in the Object class that
is invoked upon executing o.equals(…) where o is
a declared instance of Object – even if it refers
to an instance of Duration

 This gives two equals methods that can be invoked
on instances of Duration with different results

CSE 331 Autumn 2011

11

@Override equals in Duration

@Override // compiler warning if type mismatch

public boolean equals(Object o) {

 if (! (o instanceof Duration)) // Parameter must also be

 return false; // a Duration instance

 Duration d = (Duration) o; // cast to treat o as

 // a Duration

 return d.min == min && d.sec == sec;

}

Object d1 = new Duration(10,5);

Object d2 = new Duration(10,5);

System.out.println(d1.equals(d2)); // True

 overriding re-defines an inherited method from a
superclass – same name & parameter list & return type

 Durations now have to be compared as Durations (or as
Objects, but not as a mixture)

CSE 331 Autumn 2011

12

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

3

Equality and inheritance

 Add a nanosecond field for fractional seconds
public class NanoDuration extends Duration {

 private final int nano;

 public NanoDuration(int min, int sec, int nano) {

 super(min, sec);

 this.nano = nano;

}

 Inheriting equals() from Duration ignores nano

so Duration instances with different nanos will be
equal

CSE 331 Autumn 2011

13

equals: account for nano

public boolean equals(Object o) {

 if (! (o instanceof NanoDuration))

 return false;

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

But this is not symmetric!

Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

System.out.println(d1.equals(d2)); // false

System.out.println(d2.equals(d1)); // true

Oops!

CSE 331 Autumn 2011

14

Let’s get symmetry

public boolean equals(Object o) {

 if (! (o instanceof Duration))

 return false;

 // if o is a normal Duration, compare without nano

 if (! (o instanceof NanoDuration))

 return super.equals(o);

 NanoDuration nd = (NanoDuration) o;

 return super.equals(nd) && nano == nd.nano;

}

But this is not transitive!
Duration d1 = new NanoDuration(5,10,15);

Duration d2 = new Duration(5,10);

Duration d3 = new NanoDuration(5,10,30);

System.out.println(d1.equals(d2)); // true

System.out.println(d2.equals(d3)); // true

System.out.println(d1.equals(d3)); // false!

Oops!

CSE 331 Autumn 2011

15

Replaces earlier version
if (! (o instanceof Duration))

 return false; Fix in Duration

@Overrides

public boolean equals(Object o) {

 if (o == null)

 return false;

 if (! o.getClass().equals(getClass()))

 return false;

 Duration d = (Duration) o;

 return d.min == min && d.sec == sec;

}

 Check exact class instead of instanceOf

 Equivalent change in NanoDuration

CSE 331 Autumn 2011

16

General issues

 Every subtype must override equals – even if it

wants the identical definition

 Take care when comparing subtypes to one another

 On your own: Consider an ArithmeticDuration

class that adds operators but no new fields

CSE 331 Autumn 2011

17

Another solution: avoid inheritance

 Use composition instead

public class NanoDuration {

 private final Duration duration;

 private final int nano;

 // ...

}

 Now instances of NanoDuration and of Duration are

unrelated – there is no presumption that they can be equal

or unequal or even compared to one another…

 Solves some problems, introduces others – for example,

can’t use NanoDurations where Durations are expected

(because one is not a subtype of the other)

CSE 331 Autumn 2011

18

4

Efficiency of equality

 Equality tests can be slow: Are two objects with millions of sub-
objects equal? Are two video files equal?

 It is often useful to quickly pre-filter – for example
if (video1.length() != video2.length())
 return false
else do full equality check

 Java requires each class to define a standard pre-filter – a
hashCode() method that produces a single hash value (a 32-
bit signed integer) from an instance of the class

 If two objects have different hash codes, they are guaranteed to
be different

 If they have the same hash code, they may be equal objects and
should be checked in full

Unless you define hashCode() improperly!!!

CSE 331 Autumn 2011

19

specification for Object.hashCode

 public int hashCode()

 “Returns a hash code value for the object. This method is

supported for the benefit of hashtables such as those provided by

java.util.HashMap.”

 The general contract of hashCode is

 Deterministic: o.hashCode() == o.hashCode()

 ...so long as o doesn’t change between the calls

 Consistent with equality

 a.equals(b) a.hashCode()==b.hashCode()

 Change equals()? Must you update hashCode()?

 ALMOST ALWAYS! I MEAN ALWAYS! This is a sadly common

example of the epic fail
CSE 331 Autumn 2011

20

Duration hashCode implementations

public int hashCode() {

 return 1; // always safe, no pre-filtering

}

public int hashCode() {

 return min; // safe, inefficient for Durations

 // differing only in sec field

}

public int hashCode() {

 return min+sec; // safe and efficient

}

public int hashCode() {

 return new Random().newInt(50000); // danger! danger!

}

CSE 331 Autumn 2011

21

Equality, mutation, and time

 If two objects are equal now, will they always be equal?

 In mathematics, “yes”

 In Java, “you choose” – the Object contract doesn't specify this (but

why not?)

 For immutable objects, equality is inherently forever

 The object’s abstract value never changes (much more on “abstract
value” in the ADT lectures) – very roughly, these are the values the client
of a class uses (not the representation used internally)

 For mutable objects, equality can either

 Compare abstract values field-by-field or

 Be eternal (how can a class with mutable instances have eternal
equality?)

 But not both

CSE 331 Autumn 2011

22

Next steps

CSE 331 Autumn 2011

23

 Assignment 1

 Due Friday 11:59PM

 Assignment 2

 out Friday

 due in two parts, see calendar

 Lectures

 Abstract data types (F, M)

CSE 331 Autumn 2011 24

