
1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

ABSTRACT DATA TYPES

Autumn 2011

What is an ADT?

 Recall procedural abstraction

 Abstracts from the details of procedures

 A specification mechanism

 Satisfying the specification with an implementation

 Data abstraction (Abstract Data Types or ADTs):

 Abstracts from the details of data representation

 A specification mechanism

+ a way of thinking about programs and designs

 Satisfying the specification with an implementation

CSE 331 Autumn 2011

2

Why we need Abstract Data Types

 Organizing and manipulating data is pervasive

 Often crucial to start by designing data structures

 Potential problems with choosing a data structure

 Decisions about data structures are made too early

 Very hard to change key data structures later on

CSE 331 Autumn 2011

3

An ADT is a set of operations

 ADT abstracts away from a specific representation to

focus on the semantic meaning of the data

 In what sense are the following two definitions different?

 Although the representations differ, the client should

instead consider a Point as a set of operations to

create and manipulate 2D points on the plane

 By restricting the client to only call operations to access

data, the potential for modifying the representation (and

supporting algorithms) remains
CSE 331 Autumn 2011

4

class Point {

 float x, y;

}

class Point {

 float r, theta;

}

2D point

class Point {

 // A 2-d point exists somewhere in the plane, ...

 public float x();

 public float y();

 public float r();

 public float theta();

 // ... can be created, ...

 public Point(); // new point at (0,0)

 // ... can be moved, ...

 public void translate(float delta_x,

 float delta_y);

 public void scaleAndRotate(float delta_r,

 float delta_theta);

} CSE 331 Autumn 2011

5

ADT = objects + operations

 The only operations on objects of the type are those

provided by the abstraction

 The implementation is hidden

CSE 331 Autumn 2011

6

Point

x

y

r

theta

translate

scale_rot

rest of

program

abstraction

barrier
clients implementation

2

ADTs and specifications

 Specification: only in terms of the abstraction

 Never mentions the representation

 Abstraction function: Object abstract value

 What the data structure means as an abstract value

 Ex: where in the plane is that 2D point?

 Representation invariant: Object boolean

 Indicates whether the Object – the representation in

the implementation – is well-formed

 Only well-formed representations in the

implementation can be mapped to abstract values

Implementing an ADT

 To implement a data abstraction

 Select the representation of instances, the “rep”

 Implement operations in terms of that rep

 In Java, you do this in a class – in fact, you’ve done it

many times before

 Choose a representation so that

 It is possible to implement operations

 The most frequently used operations are efficient

CharSet specification
Finite mutable set of Characters

// effects: creates an empty CharSet

public CharSet ()

// modifies: this
// effects: thispost = thispre {c}

public void insert (Character c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

A CharSet implementation

class CharSet {

 private List<Character> elts = new ArrayList<Character>();

 public void insert(Character c) {

 elts.add(c);

 }

 public void delete(Character c) {

 elts.remove(c);

 }

 public boolean member(Character c) {

 return elts.contains(c);

 }

 public int size() {

 return elts.size();

 }

}

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

 // print “wrong”;

else

 // print “right”;

Where Is the Error?

 Perhaps delete is wrong

 It should remove all occurrences

 Perhaps insert is wrong

 It should not insert a character that is already there

 How can we know?

 The representation invariant tells us

The representation invariant

 States data structure well-formedness

 Must hold before and after every operation is

applied – and after initialization

 Two ways of writing the CharSet rep invariant (as

part of the comments for the CharSet class)
 // Rep invariant: elts has no nulls and no duplicates

 private List<Character> elts;

 indices i of elts . elts.elementAt(i) ≠ null

 indices i, j of elts .

 i ≠ j elts.elementAt(i).equals(elts.elementAt(j))

3

Now we can locate the error

class CharSet {

// Rep invariant: elts has no nulls and no duplicates

 private List<Character> elts = new ArrayList<Character>();

 public void insert(Character c) {

 elts.add(c);

 }

 public void delete(Character c) {

 elts.remove(c);

 }

 …

}

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

 // print “wrong”;

else

 // print “right”;

Listing the elements of a CharSet

 Consider adding the following method to CharSet
 // returns: a List containing the members of this

public List<Character> getElts();

 Consider this implementation
 // Rep invariant: elts has no nulls and no duplicates

public List<Character> getElts() { return elts; }

 Does the implementation of getElts preserve the

rep invariant?

 Kind of, sort of, not really…

Representation exposure

 Consider the client code

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

s.getElts().add(a);

s.delete(a);

if (s.member(a)) …

 The client sees the representation and (in this case) can even

manipulate it directly – makes it hard to maintain the rep invariant!

 The client is no longer constrained to only manipulate the representation

through the specification

 Representation exposure is external access to the rep; it is almost

always evil (so if you do it, document why and how, and feel guilty

about it!) – more on avoiding rep exposure next lecture

New implementation of insert

public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

 elts.addElement(cc);

}

}

 This maintains the representation invariant for the class

 The rep invariant only considers structure – well-formedness – not

meaning

 In this case, there is still an error – consider this client code

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

if (s.member(a)) print “right” else print “wrong”;

OOPS

Abstraction function to the rescue

 The abstraction function maps the representation to the

abstract value it represents

 AF(CharSet this) =

 { c | c is contained in this.elts }

 Or the “set of Characters contained in this.elts”

 The abstraction function lets us reason about behavior from

the client perspective

 The AF is typically not executable

 Do we satisfy the specification of insert?
// modifies: this

// effects: thispost = thispre {c}

public void insert (Character c);

CSE 331 Autumn 2011

17

Helps identify problem

 Applying the abstraction function to the result of the

call to insert yields AF(elts) {encrypt(‘a’)}

 So when member is checked, the implementation looks for ‘a’

rather than the encrypted value of ‘a’ – from the client’s view, an

inserted element is no longer found, even though it has not been

deleted

 What if we used this abstraction function?
AF(this) = { c | encrypt(c) is contained in this.elts }

AF(this) = { decrypt(c) | c is contained in this.elts }

4

Recap: the CharSet representation

 Ex: [‘a’,’b’,’c’], [‘b’,’a’,’c’,’d’], [‘9’,’1’,’6’]

 How do we know that these represent sets of

characters to the client?

 How do we know that they don’t represent

hexadecimals numbers
[ABC16 = 274810, BACD16 = 4782110, 91616 = 232610]?

 Or even unary numbers
[ABC = 3, BACD = 4, 916 = 3]?

 It is the AF and the specification that make this

explicit
CSE 331 Autumn 2011

19

 Creating the concrete object must establish the representation invariant

 Every concrete operation must maintain the rep invariant

 Creating the abstraction object must establish the abstraction function

 Every abstract operation must maintain the AF to provide consistent semantic

meaning to the client

 If things are right, either red arrow above will give the same result

Next steps

CSE 331 Autumn 2011

21

 Assignment 1

 Due tonight 11:59PM

 Assignment 2

 out later today

 due in two parts (M 11:59PM and F 11:59PM)

 Lectures

 Abstract data types (M)

 Modular design (W)

CSE 331 Autumn 2011 22

