
1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

ABSTRACT DATA TYPES

Autumn 2011

What is an ADT?

 Recall procedural abstraction

 Abstracts from the details of procedures

 A specification mechanism

 Satisfying the specification with an implementation

 Data abstraction (Abstract Data Types or ADTs):

 Abstracts from the details of data representation

 A specification mechanism

+ a way of thinking about programs and designs

 Satisfying the specification with an implementation

CSE 331 Autumn 2011

2

Why we need Abstract Data Types

 Organizing and manipulating data is pervasive

 Often crucial to start by designing data structures

 Potential problems with choosing a data structure

 Decisions about data structures are made too early

 Very hard to change key data structures later on

CSE 331 Autumn 2011

3

An ADT is a set of operations

 ADT abstracts away from a specific representation to

focus on the semantic meaning of the data

 In what sense are the following two definitions different?

 Although the representations differ, the client should

instead consider a Point as a set of operations to

create and manipulate 2D points on the plane

 By restricting the client to only call operations to access

data, the potential for modifying the representation (and

supporting algorithms) remains
CSE 331 Autumn 2011

4

class Point {

 float x, y;

}

class Point {

 float r, theta;

}

2D point

class Point {

 // A 2-d point exists somewhere in the plane, ...

 public float x();

 public float y();

 public float r();

 public float theta();

 // ... can be created, ...

 public Point(); // new point at (0,0)

 // ... can be moved, ...

 public void translate(float delta_x,

 float delta_y);

 public void scaleAndRotate(float delta_r,

 float delta_theta);

} CSE 331 Autumn 2011

5

ADT = objects + operations

 The only operations on objects of the type are those

provided by the abstraction

 The implementation is hidden

CSE 331 Autumn 2011

6

Point

x

y

r

theta

translate

scale_rot

rest of

program

abstraction

barrier
clients implementation

2

ADTs and specifications

 Specification: only in terms of the abstraction

 Never mentions the representation

 Abstraction function: Object  abstract value

 What the data structure means as an abstract value

 Ex: where in the plane is that 2D point?

 Representation invariant: Object  boolean

 Indicates whether the Object – the representation in

the implementation – is well-formed

 Only well-formed representations in the

implementation can be mapped to abstract values

Implementing an ADT

 To implement a data abstraction

 Select the representation of instances, the “rep”

 Implement operations in terms of that rep

 In Java, you do this in a class – in fact, you’ve done it

many times before

 Choose a representation so that

 It is possible to implement operations

 The most frequently used operations are efficient

CharSet specification
Finite mutable set of Characters

// effects: creates an empty CharSet

public CharSet ()

// modifies: this
// effects: thispost = thispre  {c}

public void insert (Character c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (Character c);

// returns: (c  this)

public boolean member (Character c);

// returns: cardinality of this

public int size ();

A CharSet implementation

class CharSet {

 private List<Character> elts = new ArrayList<Character>();

 public void insert(Character c) {

 elts.add(c);

 }

 public void delete(Character c) {

 elts.remove(c);

 }

 public boolean member(Character c) {

 return elts.contains(c);

 }

 public int size() {

 return elts.size();

 }

}

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

 // print “wrong”;

else

 // print “right”;

Where Is the Error?

 Perhaps delete is wrong

 It should remove all occurrences

 Perhaps insert is wrong

 It should not insert a character that is already there

 How can we know?

 The representation invariant tells us

The representation invariant

 States data structure well-formedness

 Must hold before and after every operation is

applied – and after initialization

 Two ways of writing the CharSet rep invariant (as

part of the comments for the CharSet class)
 // Rep invariant: elts has no nulls and no duplicates

 private List<Character> elts;

  indices i of elts . elts.elementAt(i) ≠ null

  indices i, j of elts .

 i ≠ j   elts.elementAt(i).equals(elts.elementAt(j))

3

Now we can locate the error

class CharSet {

// Rep invariant: elts has no nulls and no duplicates

 private List<Character> elts = new ArrayList<Character>();

 public void insert(Character c) {

 elts.add(c);

 }

 public void delete(Character c) {

 elts.remove(c);

 }

 …

}

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

s.insert(a);

s.delete(a);

if (s.member(a))

 // print “wrong”;

else

 // print “right”;

Listing the elements of a CharSet

 Consider adding the following method to CharSet
 // returns: a List containing the members of this

public List<Character> getElts();

 Consider this implementation
 // Rep invariant: elts has no nulls and no duplicates

public List<Character> getElts() { return elts; }

 Does the implementation of getElts preserve the

rep invariant?

 Kind of, sort of, not really…

Representation exposure

 Consider the client code

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

s.getElts().add(a);

s.delete(a);

if (s.member(a)) …

 The client sees the representation and (in this case) can even

manipulate it directly – makes it hard to maintain the rep invariant!

 The client is no longer constrained to only manipulate the representation

through the specification

 Representation exposure is external access to the rep; it is almost

always evil (so if you do it, document why and how, and feel guilty

about it!) – more on avoiding rep exposure next lecture

New implementation of insert

public void insert(Character c) {

Character cc = new Character(encrypt(c));

if (!elts.contains(cc))

 elts.addElement(cc);

}

}

 This maintains the representation invariant for the class

 The rep invariant only considers structure – well-formedness – not

meaning

 In this case, there is still an error – consider this client code

CharSet s = new CharSet();

Character a = new Character(‘a’);

s.insert(a);

if (s.member(a)) print “right” else print “wrong”;

OOPS

Abstraction function to the rescue

 The abstraction function maps the representation to the

abstract value it represents

 AF(CharSet this) =

 { c | c is contained in this.elts }

 Or the “set of Characters contained in this.elts”

 The abstraction function lets us reason about behavior from

the client perspective

 The AF is typically not executable

 Do we satisfy the specification of insert?
// modifies: this

// effects: thispost = thispre  {c}

public void insert (Character c);

CSE 331 Autumn 2011

17

Helps identify problem

 Applying the abstraction function to the result of the

call to insert yields AF(elts)  {encrypt(‘a’)}

 So when member is checked, the implementation looks for ‘a’

rather than the encrypted value of ‘a’ – from the client’s view, an

inserted element is no longer found, even though it has not been

deleted

 What if we used this abstraction function?
AF(this) = { c | encrypt(c) is contained in this.elts }

AF(this) = { decrypt(c) | c is contained in this.elts }

4

Recap: the CharSet representation

 Ex: [‘a’,’b’,’c’], [‘b’,’a’,’c’,’d’], [‘9’,’1’,’6’]

 How do we know that these represent sets of

characters to the client?

 How do we know that they don’t represent

hexadecimals numbers
[ABC16 = 274810, BACD16 = 4782110, 91616 = 232610]?

 Or even unary numbers
[ABC = 3, BACD = 4, 916 = 3]?

 It is the AF and the specification that make this

explicit
CSE 331 Autumn 2011

19

 Creating the concrete object must establish the representation invariant

 Every concrete operation must maintain the rep invariant

 Creating the abstraction object must establish the abstraction function

 Every abstract operation must maintain the AF to provide consistent semantic

meaning to the client

 If things are right, either red arrow above will give the same result

Next steps

CSE 331 Autumn 2011

21

 Assignment 1

 Due tonight 11:59PM

 Assignment 2

 out later today

 due in two parts (M 11:59PM and F 11:59PM)

 Lectures

 Abstract data types (M)

 Modular design (W)

CSE 331 Autumn 2011 22

