. - Abstract
Abstract Object [Abstract Operation Object’

Concrete e Tx T T Concrete
, P oot
Object Object

CSE 331
SOFTWARE DESIGN & IMPLEMENTATION
ABSTRACT DATA TYPES

Why we need Abstract Data Types

o Organizing and manipulating data is pervasive

o Often crucial to start by designing data structures

0 Potential problems with choosing a data structure
Decisions about data structures are made too early

Very hard to change key data structures later on

CSE 331 Autumn 2011

2D point
o

class Point {
// A 2-d point exists somewhere in the plane, ...

public
public
public
public

/7 ...
public

/7 ...
public

public

float x();
float y();
float r();
float theta();

can be created, ...
Point() ; // new point at (0,0)

can be moved, ...
void translate(float delta_x,
float delta_y);
void scaleAndRotate (float delta_r,
float delta_theta);
CSE 331 Autumn 2011

What is an ADT?

0 Recall procedural abstraction
Abstracts from the details of procedures
A specification mechanism
Satisfying the specification with an implementation
0 Data abstraction (Abstract Data Types or ADTs):
Abstracts from the details of data representation
A specification mechanism
+ a way of thinking about programs and designs
Satisfying the specification with an implementation

CSE 331 Autumn 2011

An ADT is a set of operations

01 ADT abstracts away from a specific representation to
focus on the semantic meaning of the data

0 In what sense are the following two definitions different?

class Point {
float x, y;
} }

class Point {
float r, theta;

01 Although the representations differ, the client should
instead consider a Point as a set of operations to
create and manipulate 2D points on the plane

0 By restricting the client to only call operations to access
data, the potential for modifying the representation (and
supporting algorithms) remains

CSE 331 Autumn 2011

ADT = objects + operations

0 The only operations on objects of the type are those

provided by the abstraction

o The implementation is hidden

rest of
program

clients

Point

Y

—_—

trans|

abstraction
barrier

eta o © [SlNc)

scalerot| ~~o @ [}

implementation

CSE 331 Autumn 2011

ADTs and specifications

Specification: only in terms of the abstraction
Never mentions the representation

Abstraction function: Object = abstract value
What the data structure means as an abstract value

Ex: where in the plane is that 2D point?

Representation invariant: Object = boolean
Indicates whether the Object — the representation in
the implementation — is well-formed
Only well-formed representations in the
implementation can be mapped to abstract values

Implementing an ADT

To implement a data abstraction
Select the representation of instances, the “rep”
Implement operations in terms of that rep
In Java, you do this in a class — in fact, you've done it
many times before

Choose a representation so that
It is possible to implement operations

The most frequently used operations are efficient

CharSet specification
Finite mutable set of Characters

// effects: creates an empty CharSet
public CharSet ()

// modifies: this
// effects: this,,, = this,, U {c}
public void insert (Character c);

// modifies: this
// effects: this,,, = this,. - {c}
public void delete (Character c);

// returns: (c € this)
public boolean member (Character c);

// returns: cardinality of this
public int size ();

A CharSet implementation

class CharSet {
private List<Character> elts = new ArrayList<Character>();
public void insert(Character c) {
elts.add(c);
}
public void delete (Character c) {
elts.remove(c) ;

}
public boolean member (Character c) {

return elts.contains(c); CharSet s = new CharSet();
} Character a = new Character(‘a’);
public int size() { s.insert(a);

return elts.size(); s.insert(a);
} s.delete(a);

if (s.member (a))
// print “wrong”;
else
// print “right”;

}

Where Is the Error2

Perhaps delete is wrong

It should remove all occurrences
Perhaps insert is wrong

It should not insert a character that is already there
How can we know?

The representation invariant tells us

The representation invariant

States data structure well-formedness

Must hold before and after every operation is
applied — and after initialization

Two ways of writing the CharSet rep invariant (as
part of the comments for the CharsSet class)

// Rep invariant: elts has no nulls and no duplicates

private List<Character> elts;

V indices i of elts . elts.elementAt(i) # null
V indices i, j of elts .
i # j = — elts.elementAt(i).equals(elts.elementAt(j))

Now we can locate the error

class CharSet {
// Rep invariant: elts has no nulls and no duplicates

private List<Character> elts = new ArrayList<Character>();
public void insert(Character c) {
elts.add(c) ;
}
public void delete (Character c) {

elts.remove (c) ;

CharSet s = new CharSet();
Character a = new Character(‘a’);
s.insert(a);
} s.insert(a);
s.delete(a) ;
if (s.member(a))
// print “wrong”;
else
// print “right”;

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts() ;

Consider this implementation

// Rep invariant: elts has no nulls and no duplicates
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the
rep invariant?

Kind of, sort of, not really...

Representation exposure

Consider the client code

CharSet s = new CharSet();
Character a = new Character(‘a’);
s.insert(a);

s.getElts () .add(a) ;

s.delete(a) ;

if (s.member(a))

The client sees the representation and (in this case) can even

manipulate it directly — makes it hard to maintain the rep invariant!
The client is no longer constrained to only manipulate the representation
through the specification

Representation exposure is external access to the rep; it is almost

always evil (so if you do it, document why and how, and feel guilty

about itl) — more on avoiding rep exposure next lecture

New implementation of insert

public void insert(Character c) {
Character cc = new Character (encrypt(c));
if ('elts.contains(cc))

elts.addElement (cc) ;
}

This maintains the representation invariant for the class
The rep invariant only considers structure — well-formedness — not
meaning

In this case, there is still an error — consider this client code

CharSet s = new CharSet();

Character a = new Character(‘a’); ooPS
s.insert(a);

if (s.member(a)) print “right” else print “wrong”;

Abstraction function to the rescue

The abstraction function maps the representation to the
abstract value it represents
AF (CharSet this) =

{ ¢ | ¢ is contained in this.elts }

Or the “set of Characters contained in this.elts”
The abstraction function lets us reason about behavior from
the client perspective

The AF is typically not executable

Do we satisfy the specification of insert?
// modifies: this

// effects: this,,. = this,, U {c}
public void insert (Character c);

CSE 331 Autumn 2011

Helps identify problem

Applying the abstraction function to the result of the

call to insert yields AF (elts) U {encrypt(‘a’)}
So when member is checked, the implementation looks for ‘a’
rather than the encrypted value of ‘a’ — from the client’s view, an
inserted element is no longer found, even though it has not been
deleted

What if we used this abstraction function?

AF(this) = { c | encrypt(c) is contained in this.elts }

AF (this) = { decrypt(c) | c is contained in this.elts }

Abstract

Object €<

Abstract Object | Abstral

I I |
= <<
Concrete Concreta : /EM
Object m—— Object”

QO Creating the concrete object must establish the representation invariant

QO Every concrete operation must maintain the rep invariant

QO Creating the abstraction object must establish the abstraction function

QO Every abstract operation must maintain the AF to provide consistent semantic
meaning to the client

Q If things are right, either red arrow above will give the same result

Recap: the CharSet representation
[
Ex: ['a’,b’,c], ['b)a e, d], ['9)17,6']
How do we know that these represent sets of
characters to the client?
How do we know that they don’t represent
hexadecimals numbers
[ABC,, = 2748,,, BACD,, = 47821,5, 916,, = 2326,,]2
Or even unary numbers
[ABC = 3, BACD = 4, 916 = 3]2
It is the AF and the specification that make this
explicit
CSE 331 Autumn 2011
Next steps
[

Assignment 1

Due tonight 11:59PM
Assignment 2

out later today

due in two parts (M 11:59PM and F 11:59PM)
Lectures

Abstract data types (M)

Modular design (W)

CSE 331 Autumn 2011

CSE 331 Autumn 2011

