
1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

ABSTRACT DATA TYPES II

Autumn 2011

Kinds of ADT operations (abstract)

creators & producers mutators observers

make new values of an ADT

o Creators return new ADT

values (analogous to

constructors) – effects not
modifies

o Producers are operations on

the type that return new

values

modify a

value of the

ADT (without

affecting

reference

equality; that

is, == still

holds)

return

information

to distinguish

among

values of an

ADT

 Mutable ADTs: creators, observers, and mutators

 Immutable ADTs: creators, observers, and producers

Three examples

 A primitive type as an (immutable) ADT

 A mutable type as an ADT

 An immutable type as an ADT

CSE 331 Autumn 2011

Primitive data types are ADTs

 int is an immutable ADT

 creators 0, 1, 2, ...

 producers + - * / ...

 observer Integer.toString(int)

 Peano showed we only need one creator for

basic arithmetic – why might that not be the

best programming language design choice?

CSE 331 Autumn 2011

Poly: overview

/**

 * A Poly is an immutable polynomial with

 * integer coefficients. A typical Poly is

 * c0 + c1x + c2x
2 + ...

 **/

class Poly { …

 Overview states whether mutable or immutable

 Defines abstract model for use in specs of operations

 Often difficult and always vital! Appeal to math if appropriate

 Give an example (reuse it in operation definitions)

 State in specification is abstract not concrete (in the Poly

spec above, the coefficients are the abstract state)
CSE 331 Autumn 2011

Poly: creators

// effects: makes a new Poly = 0

public Poly()

// effects: makes a new Poly = cxn

// throws: NegExponent when n < 0

public Poly(int c, int n)

 New object, not part of pre-state: in effects, not

modifies

 Overloading: distinguish procedures of same name by

parameters (Ex: two Poly constructors)
CSE 331 Autumn 2011

2

Poly: observers

// returns: the degree of this: the largest

// exponent with a non-zero coefficient; if

// no such exponent exists, returns 0

public int degree()

// returns: the coefficient of

// the term of this whose exponent is d

public int coeff(int d)

// Poly x = new Poly(4, 3);

// x.coeff(3) returns 4

// x.degree() returns 3

CSE 331 Autumn 2011

Notes on observers

 Observers return values of other types to

discriminate among values of the ADT

 Observers never modify the abstract value

 They are generally described in terms of this –

the particular object being worked on (also known

as the receiver or the target of the invocation)

CSE 331 Autumn 2011

Poly: producers

// returns: this + q (as a Poly)

public Poly add(Poly q)

// returns: the Poly = this * q

public Poly mul(Poly q)

// returns: -this

public Poly negate()

// Poly x = new Poly(4, 3);

// Poly y = new Poly(3, 7);

// Poly z = x.add(y);

// z.degree() returns 7

// z.coeff(3) returns 4

// (z.negate()).coeff(7) returns -3

CSE 331 Autumn 2011

Notes on producers

 Common in immutable types like java.lang.String

 Ex: String substring(int offset, int len)

 No side effects

 That is, they can affect the program state but cannot
have a side effect on the existing values of the ADT

CSE 331 Autumn 2011

IntSet, a mutable datatype

// Overview: An IntSet is a mutable, unbounded

// set of integers { x1, ..., xn }.

class IntSet {

 // effects: makes a new IntSet = {}

 public IntSet()

 …

CSE 331 Autumn 2011

IntSet: observers

// returns: true if x this

// else returns false

public boolean contains(int x)

// returns: the cardinality of this

public int size()

// returns: some element of this

// throws: EmptyException when size()==0

public int choose()

CSE 331 Autumn 2011

3

IntSet: mutators

// modifies: this

// effects: thispost = thispre {x}

public void add(int x) // insert an element

// modifies: this

// effects: thispost = thispre - {x}

public void remove(int x)

CSE 331 Autumn 2011

Notes on mutators

 Operations that modify an element of the type

 Rarely modify anything other than this

 Must list this in modifies clause if modified

 Typically have no return value

 Mutable ADTs may have producers too, but that is

less common

CSE 331 Autumn 2011

Quick Recap

 The examples focused on the abstraction specification –

with no connection at all to a concrete implementation

 To connect them we need the abstraction function (AF),

which maps values of the concrete implementation of

the ADT (for 331, instances of a Java class) into

abstract values in the specification

 The representation invariant (RI) ensures that values in

the concrete implementation are well-defined – that is,

the RI must hold for every element in the domain of the

AF

CSE 331 Autumn 2011

The AF is a function

 Why do we map concrete to abstract rather than

vice versa?

 It’s not a function in the other direction.

 Ex: lists [a,b] and [b,a] both represent the set

{a,b} in CharSet

 It’s not as useful in the other direction – we can

manipulate abstract values through abstract

operations

CSE 331 Autumn 2011

Brief example Abstract stack with array and

“top” index implementation

new() 0 0 0

push(17) 17 0 0

T
o
p
=
1

push(-9) 17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <>

stack = <17>

stack = <17,-9>

pop() 17 -9 0

stack = <17>

T
o
p
=
1

Abstract states are the same

stack = <17> = <17>

Concrete states are different

<[17,0,0], top=1>

≠

<[17,-9,0], top=1>

AF is a function

AF-1 is not a function

CSE 331 Autumn 2011

Writing an abstraction function

 The domain: all representations that satisfy the rep

invariant

 The range: can be tricky to denote

 For mathematical entities like sets: relatively easy

 For more complex abstractions: give them fields

 AF defines the value of each “specification field”

 The overview section of the specification should

provide a way of writing abstract values

 A printed representation is valuable for debugging

CSE 331 Autumn 2011

4

Checking the rep invariant

public void delete(Character c) {

 checkRep();

 elts.remove(c)

 checkRep();

}

…

/** Verify that elts contains no duplicates. */

/* throw an exception if it doesn’t */

private void checkRep() {

 for (int i = 0; i < elts.size(); i++) {

 assert elts.indexOf(elts.elementAt(i)) == i;

 }

}

From Friday’s

CharSet example

CSE 331 Autumn 2011

Alternative

 repOK() returns a boolean

 Callers of repOK() check the return value

 Why do this instead of checkRep()?

 More flexibility if the representation is invalid

CSE 331 Autumn 2011

Checking rep invariants

 Should code always check that the rep invariant

holds?

 Yes, if it’s inexpensive (in terms of run-time)

 Yes, for debugging (even when it’s expensive)

 It’s quite hard to justify turning the checking off

 Some private methods need not check – why?

CSE 331 Autumn 2011

Practice defensive programming

 Assume that you will make mistakes – if you’re wrong in this

assumption you’re (a) superhuman and (b) ahead of the

game anyway

 Write code designed to catch them

 On entry: check rep invariant and check preconditions

 On exit: check rep invariant and check postconditions

 Checking the rep invariant helps you discover errors

 Reasoning about the rep invariant helps you avoid errors

 Or prove that they do not exist!

 More about reasoning later in the term

CSE 331 Autumn 2011

Representation exposure redux

 Hiding the representation of data in the concrete

implementation increases the strength of the

specification contract, making the rights and

responsibilities of both the client and the

implementer clearer

 Defining the fields as private in a class is not

sufficient to ensure that the representation is hidden

 Representation exposure arises when information

about the representation can be determined by the

client
CSE 331 Autumn 2011

Representation exposure: example

 Is Line mutable or immutable?

 It depends on the implementation!

 If Line creates an internal copy: immutable

 If Line stores a reference to p1,p2: mutable

 So, storing a mutable object in an immutable
collection can expose the representation

Point p1 = new Point();

Point p2 = new Point();

Line line = new Line(p1,p2);

p1.translate(5, 10); // move point p1

CSE 331 Autumn 2011

5

Ways to avoid rep exposure

 Exploit immutability – client cannot mutate
Character choose() { // Character is immutable

 return elts.elementAt(0);

}

 Make a copy – mutating a copy in the client is OK
List<Character> getElts() {

 return new ArrayList<Character>(elts);

}

 Make an immutable copy – client cannot mutate
List<Character> getElts() {

 return Collections.unmodifiableList<Character>(elts);

}

CSE 331 Autumn 2011

Benevolent side effects: example

 Alternative implementation of member – an observor

boolean member(Character c1) {

 int i = elts.indexOf(c1);

 if (i == -1)

 return false;

 // move-to-front to

 // speed up repeated member tests

 Character c2 = elts.elementAt(0);

 elts.set(0, c1);

 elts.set(i, c2);

 return true;

}

 Mutates rep, but not abstract value – AF maps both r and r’ to abstract value a

 Nor does it violate the rep invariant

 Arguably, the client can learn something about the representation – at the same

time, this is a relatively benign case of rep exposure

r r’

a

memberimpl

AF AF

CSE 331 Autumn 2011

A half-step backwards

 Why focus so much on invariants (properties of code that

do not – or are not supposed to – change)?

 Why focus so much on immutability (a specific kind of

invariant)?

 Software is complex – invariants/immutability etc. allow us

to reduce the intellectual complexity to some degree

 That is, if we can assume some property remains

unchanged, we can consider other properties instead

 Simplistic to some degree, but reducing what we need to

focus on in a program can be a huge benefit
CSE 331 Autumn 2011

Next steps

CSE 331 Autumn 2011

 Assignment 2(a)

 Due tonight 11:59PM

 Assignment 2(b)

 Out tomorrow AM

 Due Friday 11:59PM

 Lectures (swap from original plan)

 Subtyping/subclassing (W)

 Modular design (F)

CSE 331 Autumn 2011

