
10/12/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

SUBTYPING AND SUBCLASSING

Autumn 2011

Very quick 331 recap

UW CSE331 Autumn 2011

2

 Procedural specification and implementations that
satisfy these specifications

 For specification S and program P, P satisfies S iff

 Every behavior of P is permitted by S

 “The behavior of P is a subset of S”

 Abstract data type specification and implementations
that satisfy such specifications – more complicated, but
the same idea

 These are approaches for defining, reasoning about,
testing and implementing software that satisfy specific
expectations

Similarity

UW CSE331 Autumn 2011

3

 Sometimes it is valuable to take advantage of existing
specifications and/or implementations to develop a
similar piece of software

 That is, we’d like to develop a similar artifact
(specification or implementation) not entirely from
scratch, but rather as a delta from the original

 A’ = A + A’

 Describing the differences and sharing the similarities
can simplify development, increase confidence in the
properties of the artifact, help in understanding the
problem space, etc.

Similarity in the world

UW CSE331 Autumn 2011

4

 Philosophers including Plato, Aristotle, Hegel and

others have discussed this for millennia – often in the

context of equality/identity

 In what way are two chairs similar? How does a

child recognize a (new kind of) chair?

 Why are platypi mammals even though they lay

eggs instead of bearing live offspring?

 Should we classify species using taxonomies (like

Linnaeus) or phylogenetics (like DNA)?

Similarity in software development

UW CSE331 Autumn 2011

5

 The field has many ways to exploit this notion of
similarity – examples include

 Procedures with parameters – share the algorithm, differ in
the data

 Object-oriented subclassing

 Object-oriented subtyping

 Monads in functional programming

 And many more…

 Just like similarity is confusing in the world, it can be
confusing – but very valuable – in software
development

These are related but

distinct; and the

distinctions are often

confusing and confused

Substitutability

UW CSE331 Autumn 2011

6

 The notion of satisfiability considered when an

implementation met the expectations of a

specification

 Substitutability will be the key issue in subtyping –

can one specification (and its satisfying

implementation) be substituted for another

specification (and its satisfying implementation)?

10/12/2011

2

Comparing specifications

UW CSE331 Autumn 2010

7

 A core notion underlying substitutability is the notion of
comparing two specifications

 Specification: a stronger specification (S) can always be
substituted for a weaker specification (W)
 The stronger spec S is defined over a (possibly proper)

superset of W’s inputs and returns a (possibly proper) subset
of W’s outputs – as S includes all of W’s behaviors, it will
work wherever W works

 Implementation: A procedure (P) satisfying a stronger
specification (S) can be used anywhere that a weaker
specification (W) is required

 P satisfies S and S works wherever W works, so P also
satisfies W

Example: weaker/stronger

UW CSE331 Autumn 2011

8

Specification W true any integer

Specification S true any odd integer

 Wherever W is needed – that is, where a function returning

any integer will suffice – S will work because it returns an

integer as W promises

 W cannot substitute for S, because of the expectation that S
produces an odd integer, which W might not do

 random integer

 2

 17

 …

 (random integer * 2) + 1

 17

 …

Possible implementations

Example: weaker/stronger

UW CSE331 Autumn 2011

9

Specification W x 0 any integer x

Specification S true any integer x

 A client depending on W can depend on S, because

whenever W’s precondition is satisfied, so is S’s precondition

 x + |random integer|

 x * 2

 x2

 …

 ..ditto…

 if x > -10 then x + 1 else -1

Example: weaker/stronger

UW CSE331 Autumn 2011

10

Specification W x 0 any integer x

Specification S true any odd integer x

 Stronger specifications are

More tolerant on the inputs

 But more demanding on the outputs

Weaker specifications are

More demanding on the inputs

 But more tolerant on the outputs

Do not mistake

strong/weak as

good/bad or as

bad/good

 S has more

tolerant

pre-

condition

Example: incomparable

UW CSE331 Autumn 2011

11

Specification X true any even integer

Specification Y true any odd integer

 The specifications X and Y are incomparable – neither is

stronger or weaker than the other one

 A client of either cannot substitute the other and still work in

general

 (random integer * 2) + 1

 17

 …

 random integer * 2

 10

 …

Said another way…

UW CSE331 Autumn 2010

12

 A stronger specification is

 harder to satisfy (implement) because it promises more – that is,
its effects clause is harder to satisfy and/or there are fewer
objects in modifies clause – but

 easier to use (more guarantees) by the client – that is, the
requires clause is easier to satisfy

 A weaker specification is

 easier to satisfy (more implementations satisfy it) because it
promises less – that is, the effects clause is easier to satisfy
and/or there are more objects in modifies clause – but

 harder to use (makes fewer guarantees) because it asks more of
the client – that is, the requires clause is harder to satisfy

10/12/2011

3

What about subtyping?

UW CSE331 Autumn 2011

13

 Subtyping uses substitutability to express the “is-a”
relationship

 A circle is-a shape; a rhombus is-a shape

 A platypus is-a mammal; a mammal is-a vertebrate animal

 A java.math.BigInteger is-a java.lang.Number is-a
java.lang.Object

 When a programmer declares B to be a subtype of A
that it means "every object that satisfies the
specification of B also satisfies the specification of A“

 Sometimes we call this a true subtype relationship – see next
slide

Be careful!!!!!

UW CSE331 Autumn 2011

14

 We are still talking about specifications, not
implementations!

 java.math.BigInteger might share absolutely
positively no code at all with java.lang.Object

 Java subtypes/subclasses are not necessarily true
subtypes

 No type system, including Java’s, can determine the
behavioral properties that would be needed to ensure this –
the details are beyond the scope of 331

 Java subtypes that are not true subtypes are confusing at
best and dangerous at worst

Subclassing

UW CSE331 Autumn 2011

15

 Subclassing uses inheritance to share code – take

advantage of the similarity of parts of the

implementation – enables incremental changes to

classes

 Every Java subclass is a Java subtype but is not

necessarily a true subtype

 Checking for true subtypes requires full

specifications (and deeper checking, again beyond

the scope of type systems)

Java subtypes

UW CSE331 Autumn 2011

16

 Java types are defined by classes, interfaces, and
primitives

 B is Java subtype of A if there is a declared
relationship (B extends A, B implements A)

 Compiler checks that, for each corresponding method

 same argument types

 compatible result types

 no additional declared exceptions

 Again: not the same as checking for a true subtype! No
semantic behavior is considered

Adding functionality

UW CSE331 Autumn 2011

18

 Suppose we run a web store with a class for

Products …
class Product {

 private String title, description;

 private float price;

 public float getPrice() { return price; }

 public float getTax() { return getPrice() * 0.05f; }

 // ...

}

 ... and we decide we want another class for

Products that are on sale

We could cut-and-paste

UW CSE331 Autumn 2011

19

class SaleProduct {

private String title, description;

private float price;

private float factor;

public float getPrice() { return price*factor; }

public float getTax() { return getPrice() * 0.05f;}

 //...

}

 Good idea? Bad idea? Why?

10/12/2011

4

Inheritance allows small extensions

UW CSE331 Autumn 2011

20

 The code for the extension is in some sense
comparable in size to the extension

 It’s much better to do this

class SaleProduct extends Product {

 private float factor;

 public float getPrice() {

 return super.getPrice()*factor;

 }

 //...

 }

Benefits of subclassing & inheritance

UW CSE331 Autumn 2011

21

 Don’t repeat unchanged fields and methods
 Simpler maintenance of implementation: just fix bugs once

 Clients who understand the superclass specification need
only study novel parts of subclass

 Modularity: can ignore private fields and methods
of superclass (if properly defined)

 Differences are not buried under mass of similarities

 Ability to substitute new implementations

 Clients need not change their code to use new
subclasses

Subclassing can be misused

UW CSE331 Autumn 2011

22

 Poor planning leads to muddled inheritance hierarchy

 Relationships may not match untutored intuition

 If subclass is tightly coupled with superclass

 Can depend on implementation details of superclass

 Changes in superclass can break subclass (“fragile base

class”)

 Subtyping is the source of most benefits of subclassing

 Just because you want to inherit an implementation does not

mean you want to inherit a type – and vice versa!

Every square is a rectangle

UW CSE331 Autumn 2011

23

interface Rectangle {

 // effects: fits shape to given size

 // thispost.width = w, thispost.height = h

 void setSize(int w, int h);

}

Which is the best option for Square.setSize()?
interface Square implements Rectangle {…}

1. // requires: w = h

// effects: fits shape to given size

void setSize(int w, int h);

2. // effects: sets all edges to given size

void setSize(int edgeLength);

3. // effects: sets this.width and this.height to w

void setSize(int w, int h);

4. // effects: fits shape to given size

// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;

Square and rectangle are unrelated

UW CSE331 Autumn 2011

24

 Square is not a true subtype of Rectangle

 Rectangles are expected to have a width and height that can be
changed independently

 Squares violate that expectation, could surprise client

 Rectangle is not a true subtype of Square
 Squares are expected to have equal widths and heights

 Rectangles violate that expectation, could surprise client

 Inheritance isn't always intuitive – it does encourage clear thinking
and prevents errors

 Possible solution might be to make them incomparable (perhaps as
siblings under a common parent)

 Why isn’t the elementary school “every square is a rectangle” true when
we think about them as true subtypes?

(im)mutability!

Substitution principle: redux

UW CSE331 Autumn 2011

25

 Constraints on methods

 For each method in a supertype, the subtype must have a

corresponding overriding method

 Also may introduce new methods

 Each overriding method must

 Ask nothing extra of client (“weaker precondition”)

 requires clause is at most as strict as in the supertype’s method

 Guarantee at least as much (“stronger postcondition”)

 effects clause is at least as strict as in the supertype method

 No new entries in modifies clause

10/12/2011

5

Substitution: specification weakening

UW CSE331 Autumn 2011

26

 Method inputs

 Argument types may be replaced with supertypes
(“contravariance”)

 This doesn't place any extra demand on the client.

 Java forbids any change

 Method results

 Result type may be replaced with a subtype (“covariance”)

 This doesn't violate any expectation of the client

 No new exceptions (for values in the domain)

 Existing exceptions can be replaced with subtypes

 This doesn't violate any expectation of the client

Substitution exercise

UW CSE331 Autumn 2011

27

 Suppose we have a method which, when given one
product, recommends another
Product recommend(Product ref);

 Which of these are possible forms of method in a true
subtype?
 Product recommend(SaleProduct ref);

 SaleProduct recommend(Product ref);

 Product recommend(Object ref);

 Product recommend(Product ref)

 throws NoSaleException;

 Same kind of reasoning for exception subtyping and for
modifies clause

Small groups: 2-3

minutes

 bad

 OK

 OK (Java overloading)

 bad

Interfaces and abstract classes

UW CSE331 Autumn 2011

28

 Provide interfaces for your functionality
 Lets client write code to satisfy interfaces rather than to

satisfy concrete classes

 Allows different implementations later

 Facilitates composition, wrapper classes – we’ll see more of
this over the term

 Consider providing helper/template abstract classes
 Can minimize number of methods that new implementation

must provide

 Makes writing new implementations much easier

 Using them is optional, so they don't limit freedom to create
radically different implementations

Why interfaces instead of classes

UW CSE331 Autumn 2011

29

 Java design decisions

 A class has exactly one superclass

 A class may implement multiple interfaces

 An interface may extend multiple interfaces

 Observation

 multiple superclasses are difficult to use and to

implement

 multiple interfaces, single superclass gets most of the

benefit

Concrete, abstract, or interface?

UW CSE331 Autumn 2011

30

 Telephone: $10 landline, speakerphone, cellphone,

Skype, VOIP phone

 TV: CRT, Plasma, LCD

 Table: dining table, desk, coffee table

 Coffee: espresso, frappuccino, decaf, Iced coffee

 Computer: laptop, desktop, server, smart phone

 CPU: x86, AMD64, PowerPC

 Professor: Ernst, Notkin, Stepp, Perkins

Depends on the similarity

UW CSE331 Autumn 2011

31

 …that one wants to benefit from

 The specification of the related objects?

 The implementation of the related objects – or parts
thereof?

 Not all similarity is similar

 So thinking about the kind of similarity you want to
exploit in software development will drive many design
decisions

 Better to do this consciously than subconsciously

10/12/2011

6

Next steps

CSE 331 Autumn 2011

32

 Assignment 2: part B due Friday 11:59PM

 Assignment 3: out on Friday – how to handle pairs?

 Lectures: F (modular design), M (design patterns)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

