
10/14/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

MODULAR DESIGN PRINCIPLES

Autumn 2011

Google image

search on

“designing

software

modules”
 ―‘Pretty much everything on the

web uses those two things: C and
UNIX,‘ Pike tells Wired. ‗The
browsers are written in C. The UNIX
kernel — that pretty much the
entire Internet runs on — is written
in C. Web servers are written in C,
and if they're not, they're written in
Java or C++, which are C
derivatives, or Python or Ruby,
which are implemented in C.‘‖

 ―‘Jobs was the king of the visible,
and Ritchie is the king of what is
largely invisible,‘‖ says Martin
Rinard, professor of electrical
engineering and computer science
at MIT.‖

 [Both quotations from CNN]

Dennis Ritchie (1941-2011) 

UW CSE331 Autumn 2011

 Above: Ritchie standing, Ken

Thompson sitting, PDP-11 in

background

 Turing Award. National Medal of

Technology. Japan Prize, …

Modules

UW CSE331 Autumn 2011

 A module is a relatively general term for a class or a
type or any kind of design unit in software

 A modular design focuses on what modules are defined,
what their specifications are, how they relate to each
other, but not usually on the implementation of the
modules themselves

 Overall, you‘ve been given the modular design so far –
and now you have to learn more about how to do the
design

 That‘s the focus of Assignment #3, and it‘s why we‘re using
pairs

Ideals of modular software

 Decomposable – can be broken down into
modules to reduce complexity and allow
teamwork

 Composable – ―Having divided to conquer,
we must reunite to rule [M. Jackson].‖

 Understandable – one module can be
examined, reasoned about, developed, etc.
in isolation

 Continuity – a small change in the
requirements should affect a small number
of modules

 Isolation – an error in one module should be
as contained as possible

UW CSE331 Autumn 2011

Two general design issues

 Cohesion – why are units (like methods) placed in

the same module? Usually to collectively form an

ADT

 Coupling – what is the dependence between

modules? Reducing the dependences (which come in

many forms) is desirable

UW CSE331 Autumn 2011

Cohesion

UW CSE331 Autumn 2011

 The most common reason to put elements – data and behavior

– together is to form an ADT

 There are, at least historically, other reasons to place elements together

– for example, for performance reasons it was sometimes good to place

together all code to be run upon initialization of a program

 The common design objective of separation of concerns

suggests a module should address a single set of concerns

Example considerations

 Should Item/DiscountItem know about added discount for purchasing

20+ items? Should ShoppingCart know about bulk pricing?

 Should BinarySearch know the type of the objects it is sorting?

 This kind of questions help make more effective cohesion

decisions

http://en.wikipedia.org/wiki/Dennis_Ritchie

10/14/2011

2

Coupling

UW CSE331 Autumn 2011

 How are modules dependent on one another?

 Statically (in the code)? Dynamically (at run-time)? And

more

 Ideally, split design into parts that don't interact much

 An artist‘s rendition – to really assess coupling one needs to

know what the arrows are, etc.

MY
FINAL

PROJECT

MY

FINAL PROJECT

MY

FINECT PROJAL

An application
A poor decomposition

(parts strongly coupled)
A better decomposition
(parts weakly coupled)

Roughly, the more coupled k

modules are, the more one

needs to think of them as a

single, larger module

Different kinds of dependences

 Aggregation – ―is part of‖ is a field that is a sub-part
 Ex: A car has an engine

 Composition – ―is entirely made of‖ has the parts live
and die with the whole

 Ex: A book has pages (but perhaps the book cannot exist
without the pages, and the pages cannot exist without the
book)

 Subtyping – ―is-a‖ is for substitutability

 Invokes – ―executes‖ is for having a computation
performed

 In other words, there are lots of different kinds of
arrows (dependences) and clarifying them is crucial

Law of Demeter
Karl Lieberherr  and colleagues

UW CSE331 Autumn 2011

 Law of Demeter: An object should know as little as
possible about the internal structure of other objects
with which it interacts – a question of coupling

 Or… ―only talk to your immediate friends‖

 Closely related to representation exposure and
(im)mutability

 Bad example – too-tight chain of coupling between
classes
general.getColonel().getMajor(m).getCaptain(cap)
 .getSergeant(ser).getPrivate(name).digFoxHole();

 Better example
general.superviseFoxHole(m, cap, ser, name);

An object should only send messages to …
(More Demeter)

UW CSE331 Autumn 2011

 itself (this)

 its instance variables

 its method's parameters

 any object it creates

 any object returned by a call to one of this's methods

 any objects in a collection of the above

 notably absent: objects returned by messages sent to

other objects

Guidelines: not strict rules!

But thinking about them

will generally help you

produce better designs

Coupling is the path to the dark side

UW CSE331 Autumn 2011

 Coupling leads to complexity

 Complexity leads to confusion

 Confusion leads to suffering

 Once you start down the dark

path, forever will it dominate

your destiny, consume you it will

God classes

UW CSE331 Autumn 2011

 god class: a class that hoards too much of the data

or functionality of a system

 Poor cohesion – little thought about why all of the

elements are placed together

 Only reduces coupling by collapsing multiple modules

into one (and thus reducing the dependences between

the modules to dependences within a module)

 A god class is an example of an anti-pattern – it is

a known bad way of doing things

http://en.wikipedia.org/wiki/Karl_Lieberherr

10/14/2011

3

Design exercise

UW CSE331 Autumn 2011

 Write a typing break reminder program

 Offer the hard-working user occasional reminders of

the perils of Repetitive Strain Injury, and encourage the

user to take a break from typing

 Naive design

 Make a method to display messages and offer

exercises

 Make a loop to call that method from time to time

 (Let's ignore multi-threaded solutions for this discussion)‏

TimeToStretch suggests exercises

UW CSE331 Autumn 2011

public class TimeToStretch {

 public void run() {

 System.out.println("Stop typing!");

 suggestExercise();

 }

 public void suggestExercise() {

 ...

 }

}

Timer calls run() periodically

UW CSE331 Autumn 2011

public class Timer {

 private TimeToStretch tts = new TimeToStretch();

 public void start() {

 while (true) {

 ...

 if (enoughTimeHasPassed) {

 tts.run();

 }

 ...

 }

 }

}

Main class puts it together

UW CSE331 Autumn 2011

class Main {

 public static void main(String[] args) {

 Timer t = new Timer();

 t.start();

 }

}

Module dependency diagram

UW CSE331 Autumn 2011

 An arrow in a module dependency diagram indicates

―depends on‖ or ―knows about‖ – simplistically, ―any name

mentioned in the source code‖

 Does Timer really need to depend on TimeToStretch?

 Is Timer re-usable in a new context?

TimeToStretch

Timer

Main

Timer depends on

TimeToStretch

Main class depends on Timer

Decoupling

UW CSE331 Autumn 2011

 Timer needs to call the run method

 Timer doesn't need to know what the run method does

 Weaken the dependency of Timer on TimeToStretch

 Introduce a weaker specification, in the form of an interface
or abstract class
public abstract class TimerTask {

 public abstract void run();

 }

 Timer only needs to know that something (e.g.,
TimeToStretch) meets the TimerTask specification

10/14/2011

4

TimeToStretch (version 2)‏

UW CSE331 Autumn 2011

public class TimeToStretch extends TimerTask {

 public void run() {

 System.out.println("Stop typing!");

 suggestExercise();

 }

 public void suggestExercise() {

 ...

 }

}

Timer v2

UW CSE331 Autumn 2011

public class Timer {

 private TimerTask task;

 public Timer(TimerTask task) { this.task = task; }

 public void start() {

 while (true) {

 ...

 task.run();

 }

 }

}

 Main creates the TimeToStretch object and passes it to
Timer

Timer t = new Timer(new TimeToStretch());

t.start();

Module dependency diagram

UW CSE331 Autumn 2011

 Main still depends on Timer (is this necessary?)‏

 Main depends on the constructor for TimeToStretch

 Timer depends on TimerTask, not TimeToStretch

 Unaffected by implementation details of TimeToStretch

 Now Timer is much easier to reuse

TimeToStretch

Timer

Main

TimerTask

Subclassing

Dependence

callbacks

UW CSE331 Autumn 2011

 TimeToStretch creates a Timer, and passes in

a reference to itself so the Timer can call it back

 This is a callback – a method call from a module to

a client that notifies about some condition

 Use a callback to invert a dependency

 Inverted dependency: TimeToStretch depends on

Timer (not vice versa)

 Side benefit: Main does not depend on Timer

Callbacks

UW CSE331 Autumn 2011

 Synchronous callbacks

 Ex: HashMap calls its client‘s

hashCode, equals

 Useful when the callback result is

needed immediately by the module

 Asynchronous callbacks

 Examples: GUI listeners

 Register to indicate interest and where to call back

 Useful when the callback should be performed later, when

some interesting event occurs

A synchronous callback.

Time increases downward.

Solid lines: calls

Dotted lines: returns

TimeToStretch v3

UW CSE331 Autumn 2011

public class TimeToStretch extends TimerTask {

 private Timer timer;

 public TimeToStretch() {

 timer = new Timer(this);

 }

 public void start() {

 timer.start();

 }

 public void run() {

 System.out.println("Stop typing!");

 suggestExercise();

 }

 ...

}

Register interest

with the timer

Callback entry point

10/14/2011

5

Main v3

UW CSE331 Autumn 2011

 TimeToStretch tts = new TimeToStretch();

tts.start();

 Use a callback to invert a dependency

 This diagram shows the inversion of the dependency between

Timer and TimeToStretch (compared to v1)

TimeToStretch

Timer

Main

TimerTask

Main does not depend on Timer

TimeToStretch depends on Timer

How do we design classes?

UW CSE331 Autumn 2011

 One common approach to class identification is to

consider the specifications

 In particular, it is often the case that

 nouns are potential classes, objects, fields

 verbs are potential methods or responsibilities of a

class

Design exercise

UW CSE331 Autumn 2011

 Suppose we are writing a birthday-reminder

application that tracks a set of people and their

birthdays, providing reminders of whose birthdays

are on a given day

 What classes are we likely to want to have? Why?

Class shout-out about classes

More detail for those classes

UW CSE331 Autumn 2011

 What fields do they have?

 What constructors do they have?

 What methods do they provide?

 What invariants should we guarantee?

In small groups, ~5 minutes

Next steps

UW CSE331 Autumn 2011

 Assignment 2: part B due today 11:59PM

 Assignment 3: out on the weekend – choose pairs!

 See http://www.cs.washington.edu/education/courses/cse331/11sp/homework.shtml

(HW3, Restaurant) for a preview to get started (2 weeks)

 Assignment 4 and 5: closer to being selected

 Lectures: M – was going to be design patterns… I‘ve had a

request for more testing first

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

http://www.cs.washington.edu/education/courses/cse331/11sp/homework.shtml
http://www.cs.washington.edu/education/courses/cse331/11sp/homework.shtml

