10/17/2011

Method design
==
o A method should do only one thing, and do it well — for
example, observe but not mutate, ...
1 Effective Java (EJ) Tip #40: Design method signatures
“Use the active voice.” carefully
“Omit needless words.” “ . . Avoid long parameter lists
Don’t patch bad code - rewrite Perlis: “If you have a procedure with ten parameters, you
“Make sure your code 'does nothing' probably missed some.”
gracefully.” Especially error-prone if the parameters are all the same type
CSE 331 Avoid methods that take lots of boolean "flag" parameters
SOFTWARE DESIGN & IMPLEMENTATION 0 EJ Tip #41: Use overloading judiciously
Can be useful, but don't overload with the same number of
STYLE parameters and think about whether the methods really are
related.
Field design Constructor design
| ==

o1 A variable should be made into a field if and only if
It is part of the inherent internal state of the object
It has a value that retains meaning throughout the object's
life
Its state must persist past the end of any one public method
o1 All other variables can and should be local to the
methods in which they are used
Fields should not be used to avoid parameter passing

Not every constructor parameter needs to be a field

1 Constructors should take all arguments necessary to initialize the
obiject's state — no more, no less

Don't make the client pass in things they shouldn't have to
Example: public Student(String name, int sid)
= Why not pass in the student's courses?
o1 Obiject should be completely initialized after constructor is done
Shouldn't need to call other hods to “finish” initialization
NOT: public Student(String name), then calling setSid (sid)
o1 Minimize the work done in a constructor

A constructor should not do any heavy work, such as calling println to
print state, or performing expensive computations

If an object's creation is heavyweight, use a static method instead

Naming
o

11 Choose good names for classes and interfaces
Class names should be nouns
= Watch out for "verb + er" names, e.g. Manager, Scheduler, ShapeDisplayer.
= Interface names often end in -able or -ible, e.g. Iterable, Comparable.
Method names should be verb phrases
= Observer methods can be nouns such as size or totalQuantity
= Many observers should be named with "get" or "is" or "has"
= Most mutators should be named with "set" or similar
u Choose affirmative, positive names over negative ones
= isSafe, not isUnsafe. isEmpty, not hasNoElements

o EJ Tip #56: Adhere to generally accepted naming conventions

Class design ideals
[

11 Cohesion and coupling, already discussed

o1 Completeness: Every class should present a complete interface
o Clarity: Interface should make sense without confusion

o1 Convenience: Provide simple ways for clients to do common
tasks

o Consistency: In names, param/returns, ordering, and behavior

10/17/2011

Completeness

Leaving out important methods makes a class
cumbersome to use
counterexample: A collection with add but no remove

counterexample: A tool object with a setHighlighted
method to select it, but no setUnhighlighted method to
deselect it

counterexample: Date class has no date-arithmetic features
Related

Obijects that have a natural ordering should implement
Comparable

Obijects that might have duplicates should implement equals
Almost all objects should implement tostring

Consistency

A class or interface should be consistent with respect to
names, parameters/returns, ordering, and behavior
Use a similar naming scheme; accept parameters in the
same order — not like

setFirst(int index, String value)

setLast (String value, int index)
Some counterexamples

Date/GregorianCalendar use O-based months

String equalsIgnoreCase, compareToIgnoreCase;
but regionMatches (boolean ignoreCase)
String.length(), array.length, collection.size()

Clarity and Convenience

Clarity: An interface should make sense without creating
confusion
Even without fully reading the spec/docs, a client should largely
be able to follow his/her natural intuitions about how to use your
class — although reading and precision are crucial

Counterexample: Iterator's remove method
P

Convenience: Provide simple ways for clients to do common
tasks

If you have a size / indexOf, include isEmpty / contains,
too

Counterexample: System. in sucks; finally fixed with Scanner

Open-Closed Principle

Software entities should be open for extension, but
closed for modification.

When features are added to your system, do so by adding
new classes or reusing existing ones in new ways

If possible, don't make change by modifying existing ones —
existing code works and changing it can introduce bugs and
errors.

Related: Code to interfaces, not to classes

Ex: accept a List parameter, not ArrayList or
LinkedList

EJ Tip #52: Refer to objects by their interfaces

Cohesion again (“expert pattern”)

The class that contains most of the data needed to
perform a task should perform the task
counterexample: A class with lots of getters but not a
lot of methods that actually do work — this relies on
other classes to “get” the data and process it externally
Reduce duplication

Only one class should be responsible for maintaining a
set of data, even (especially) if it is used by many other
classes

Invariants

Class invariant: An assertion that is true about every
object of a class throughout each object’s lifetime

Ex: A BankAccount's balance will never be negative
State them in your documentation, and enforce them
in your code

10/17/2011

Documenting a class

Keep internal and external documentation separate
external: /** ... */ Javadoc for classes and
methods
Describes things that clients need to know about the class
Should be specific enough to exclude unacceptable
implementations, but general enough to allow for all correct
implementations
Includes all pre /postconditons and class invariants
internal: // comments inside method bodies
Describes details of how the code is implemented

Information that clients wouldn't and shouldn't need, but a
fellow developer working on this class would want

The role of documentation
From Kernighan and Plauger

If a program is incorrect, it matters little what the docs say

If documentation does not agree with code, it is not worth
much

Consequently, code must largely document itself. If not,
rewrite the code rather than increasing the documentation of
the existing complex code. Good code needs fewer
comments than bad code.

Comments should provide additional information from the
code itself. They should not echo the code.

Mnemonic variable names and labels, and a layout that
emphasizes logical structure, help make a program self-
documenting

Static vs. non-static design

What members should be static?
members that are related to an entire class
not related to the data inside a particular object of that
class’s type
Should | have to construct an object just to call this method?
Examples
Time.fromString
Math.pow
Calendar.getInstance
NumberFormatter.getCurrencyInstance
Arrays.toString? Collections.sort?

Public vs. private design

Strive to minimize the public interface of the classes you

write
Clients like classes that are simple to use and understand
Reasoning is easier with narrower interfaces and
specifications

Achieve a minimal public interface by
Removing unnecessary methods — consider each one
Making everything private unless absolutely necessary
Pulling out unrelated behavior into a separate class

public static constants are okay if declared final

But still better to have a public static method to get the
value; why?

Choosing types

Numbers: Favor int and long for most numeric computations
EJ Tip #48: Avoid £1loat and double if exact answers are required
Classic example: Representing money (round-off is bad here)
Favor the use of collections (e.g. lists) over arrays
Strings are often overused since much data comes in as text
Consider use of enums, even with only two values — which of the
following is better?

oven.setTemp (97, true);
oven.setTemp (97, Temperature.CELSIUS) ;

Wrapper types should be used minimally (usually with collections)

EJ Tip #49: Prefer primitive types to boxed primitives (that is, Integer,
Float, etc.)
Bad: public Counter (Character ch)

Independence of views

Confine user interaction to a core set of “view” classes and
isolate these from the classes that maintain the key system
data

Ex: ShoppingMain
Do not put println statements in your core classes

This locks your code into a text representation

Makes it less useful if the client wants a GUI, a web app, etc.
Instead, have your core classes return data that can be
displayed by the view classes — which of the following is
better?

public void printMyself ()
public String toString()

10/17/2011

Next steps

o

Assignment 3: out today, pairs assigned, groups created
Assignment 3: now due Sunday October 30, 11:59PM
Lectures: W and F (Design Patterns)

o

m]

o1 Upcoming: Friday 10/28, in class midterm — open book, open
note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

UW CSE331 Autumn 2011

