
10/17/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

STYLE

Autumn 2011

“Use the active voice.”

“Omit needless words.”
“Don't patch bad code - rewrite it.”

“Make sure your code 'does nothing'

gracefully.”

Method design

 A method should do only one thing, and do it well – for
example, observe but not mutate, …

 Effective Java (EJ) Tip #40: Design method signatures
carefully

 Avoid long parameter lists

 Perlis: “If you have a procedure with ten parameters, you
probably missed some.”

 Especially error-prone if the parameters are all the same type

 Avoid methods that take lots of boolean "flag" parameters

 EJ Tip #41: Use overloading judiciously

 Can be useful, but don't overload with the same number of
parameters and think about whether the methods really are
related.

Field design

 A variable should be made into a field if and only if

 It is part of the inherent internal state of the object

 It has a value that retains meaning throughout the object's

life

 Its state must persist past the end of any one public method

 All other variables can and should be local to the

methods in which they are used

 Fields should not be used to avoid parameter passing

 Not every constructor parameter needs to be a field

Constructor design

 Constructors should take all arguments necessary to initialize the
object's state – no more, no less

 Don't make the client pass in things they shouldn't have to

 Example: public Student(String name, int sid)

 Why not pass in the student's courses?

 Object should be completely initialized after constructor is done

 Shouldn't need to call other methods to “finish” initialization

 NOT: public Student(String name), then calling setSid(sid)

 Minimize the work done in a constructor

 A constructor should not do any heavy work, such as calling println to
print state, or performing expensive computations

 If an object's creation is heavyweight, use a static method instead

Naming

 Choose good names for classes and interfaces

 Class names should be nouns

 Watch out for "verb + er" names, e.g. Manager, Scheduler, ShapeDisplayer.

 Interface names often end in -able or -ible, e.g. Iterable, Comparable.

 Method names should be verb phrases

 Observer methods can be nouns such as size or totalQuantity

 Many observers should be named with "get" or "is" or "has"

 Most mutators should be named with "set" or similar

 Choose affirmative, positive names over negative ones

 isSafe, not isUnsafe. isEmpty, not hasNoElements

 EJ Tip #56: Adhere to generally accepted naming conventions

Class design ideals

 Cohesion and coupling, already discussed

 Completeness: Every class should present a complete interface

 Clarity: Interface should make sense without confusion

 Convenience: Provide simple ways for clients to do common

tasks

 Consistency: In names, param/returns, ordering, and behavior

10/17/2011

2

Completeness

 Leaving out important methods makes a class
cumbersome to use

 counterexample: A collection with add but no remove

 counterexample: A tool object with a setHighlighted
method to select it, but no setUnhighlighted method to
deselect it

 counterexample: Date class has no date-arithmetic features

 Related

 Objects that have a natural ordering should implement
Comparable

 Objects that might have duplicates should implement equals

 Almost all objects should implement toString

Consistency

 A class or interface should be consistent with respect to
names, parameters/returns, ordering, and behavior

 Use a similar naming scheme; accept parameters in the
same order – not like
 setFirst(int index, String value)

setLast(String value, int index)

 Some counterexamples

 Date/GregorianCalendar use 0-based months

 String equalsIgnoreCase, compareToIgnoreCase;

but regionMatches(boolean ignoreCase)

 String.length(), array.length, collection.size()

Clarity and Convenience

 Clarity: An interface should make sense without creating
confusion

 Even without fully reading the spec/docs, a client should largely
be able to follow his/her natural intuitions about how to use your
class – although reading and precision are crucial

 Counterexample: Iterator's remove method

 Convenience: Provide simple ways for clients to do common
tasks

 If you have a size / indexOf, include isEmpty / contains,
too

 Counterexample: System.in sucks; finally fixed with Scanner

Open-Closed Principle

 Software entities should be open for extension, but
closed for modification.

 When features are added to your system, do so by adding
new classes or reusing existing ones in new ways

 If possible, don't make change by modifying existing ones –
existing code works and changing it can introduce bugs and
errors.

 Related: Code to interfaces, not to classes

 Ex: accept a List parameter, not ArrayList or
LinkedList

 EJ Tip #52: Refer to objects by their interfaces

Cohesion again (“expert pattern”)

 The class that contains most of the data needed to

perform a task should perform the task

 counterexample: A class with lots of getters but not a

lot of methods that actually do work – this relies on

other classes to “get” the data and process it externally

 Reduce duplication

 Only one class should be responsible for maintaining a

set of data, even (especially) if it is used by many other

classes

Invariants

 Class invariant: An assertion that is true about every

object of a class throughout each object’s lifetime

 Ex: A BankAccount's balance will never be negative

 State them in your documentation, and enforce them

in your code

10/17/2011

3

Documenting a class

 Keep internal and external documentation separate

 external: /** ... */ Javadoc for classes and
methods

 Describes things that clients need to know about the class

 Should be specific enough to exclude unacceptable
implementations, but general enough to allow for all correct
implementations

 Includes all pre/postconditons and class invariants

 internal: // comments inside method bodies

 Describes details of how the code is implemented

 Information that clients wouldn't and shouldn't need, but a
fellow developer working on this class would want

The role of documentation
From Kernighan and Plauger

 If a program is incorrect, it matters little what the docs say

 If documentation does not agree with code, it is not worth
much

 Consequently, code must largely document itself. If not,
rewrite the code rather than increasing the documentation of
the existing complex code. Good code needs fewer
comments than bad code.

 Comments should provide additional information from the
code itself. They should not echo the code.

 Mnemonic variable names and labels, and a layout that
emphasizes logical structure, help make a program self-
documenting

Static vs. non-static design

 What members should be static?

 members that are related to an entire class

 not related to the data inside a particular object of that
class’s type

 Should I have to construct an object just to call this method?

 Examples
 Time.fromString

 Math.pow

 Calendar.getInstance

 NumberFormatter.getCurrencyInstance

 Arrays.toString? Collections.sort?

Public vs. private design

 Strive to minimize the public interface of the classes you
write

 Clients like classes that are simple to use and understand

 Reasoning is easier with narrower interfaces and
specifications

 Achieve a minimal public interface by
 Removing unnecessary methods – consider each one

 Making everything private unless absolutely necessary

 Pulling out unrelated behavior into a separate class

 public static constants are okay if declared final

 But still better to have a public static method to get the
value; why?

Choosing types

 Numbers: Favor int and long for most numeric computations

 EJ Tip #48: Avoid float and double if exact answers are required

 Classic example: Representing money (round-off is bad here)

 Favor the use of collections (e.g. lists) over arrays

 Strings are often overused since much data comes in as text

 Consider use of enums, even with only two values – which of the
following is better?

 oven.setTemp(97, true);
oven.setTemp(97, Temperature.CELSIUS);

 Wrapper types should be used minimally (usually with collections)

 EJ Tip #49: Prefer primitive types to boxed primitives (that is, Integer,
Float, etc.)

 Bad: public Counter(Character ch)

Independence of views

 Confine user interaction to a core set of “view” classes and
isolate these from the classes that maintain the key system
data

 Ex: ShoppingMain

 Do not put println statements in your core classes

 This locks your code into a text representation

 Makes it less useful if the client wants a GUI, a web app, etc.

 Instead, have your core classes return data that can be
displayed by the view classes – which of the following is
better?

 public void printMyself()

public String toString()

10/17/2011

4

Next steps

UW CSE331 Autumn 2011

 Assignment 3: out today, pairs assigned, groups created

 Assignment 3: now due Sunday October 30, 11:59PM

 Lectures: W and F (Design Patterns)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

