
10/17/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

STYLE

Autumn 2011

“Use the active voice.”

“Omit needless words.”
“Don't patch bad code - rewrite it.”

“Make sure your code 'does nothing'

gracefully.”

Method design

 A method should do only one thing, and do it well – for
example, observe but not mutate, …

 Effective Java (EJ) Tip #40: Design method signatures
carefully

 Avoid long parameter lists

 Perlis: “If you have a procedure with ten parameters, you
probably missed some.”

 Especially error-prone if the parameters are all the same type

 Avoid methods that take lots of boolean "flag" parameters

 EJ Tip #41: Use overloading judiciously

 Can be useful, but don't overload with the same number of
parameters and think about whether the methods really are
related.

Field design

 A variable should be made into a field if and only if

 It is part of the inherent internal state of the object

 It has a value that retains meaning throughout the object's

life

 Its state must persist past the end of any one public method

 All other variables can and should be local to the

methods in which they are used

 Fields should not be used to avoid parameter passing

 Not every constructor parameter needs to be a field

Constructor design

 Constructors should take all arguments necessary to initialize the
object's state – no more, no less

 Don't make the client pass in things they shouldn't have to

 Example: public Student(String name, int sid)

 Why not pass in the student's courses?

 Object should be completely initialized after constructor is done

 Shouldn't need to call other methods to “finish” initialization

 NOT: public Student(String name), then calling setSid(sid)

 Minimize the work done in a constructor

 A constructor should not do any heavy work, such as calling println to
print state, or performing expensive computations

 If an object's creation is heavyweight, use a static method instead

Naming

 Choose good names for classes and interfaces

 Class names should be nouns

 Watch out for "verb + er" names, e.g. Manager, Scheduler, ShapeDisplayer.

 Interface names often end in -able or -ible, e.g. Iterable, Comparable.

 Method names should be verb phrases

 Observer methods can be nouns such as size or totalQuantity

 Many observers should be named with "get" or "is" or "has"

 Most mutators should be named with "set" or similar

 Choose affirmative, positive names over negative ones

 isSafe, not isUnsafe. isEmpty, not hasNoElements

 EJ Tip #56: Adhere to generally accepted naming conventions

Class design ideals

 Cohesion and coupling, already discussed

 Completeness: Every class should present a complete interface

 Clarity: Interface should make sense without confusion

 Convenience: Provide simple ways for clients to do common

tasks

 Consistency: In names, param/returns, ordering, and behavior

10/17/2011

2

Completeness

 Leaving out important methods makes a class
cumbersome to use

 counterexample: A collection with add but no remove

 counterexample: A tool object with a setHighlighted
method to select it, but no setUnhighlighted method to
deselect it

 counterexample: Date class has no date-arithmetic features

 Related

 Objects that have a natural ordering should implement
Comparable

 Objects that might have duplicates should implement equals

 Almost all objects should implement toString

Consistency

 A class or interface should be consistent with respect to
names, parameters/returns, ordering, and behavior

 Use a similar naming scheme; accept parameters in the
same order – not like
 setFirst(int index, String value)

setLast(String value, int index)

 Some counterexamples

 Date/GregorianCalendar use 0-based months

 String equalsIgnoreCase, compareToIgnoreCase;

but regionMatches(boolean ignoreCase)

 String.length(), array.length, collection.size()

Clarity and Convenience

 Clarity: An interface should make sense without creating
confusion

 Even without fully reading the spec/docs, a client should largely
be able to follow his/her natural intuitions about how to use your
class – although reading and precision are crucial

 Counterexample: Iterator's remove method

 Convenience: Provide simple ways for clients to do common
tasks

 If you have a size / indexOf, include isEmpty / contains,
too

 Counterexample: System.in sucks; finally fixed with Scanner

Open-Closed Principle

 Software entities should be open for extension, but
closed for modification.

 When features are added to your system, do so by adding
new classes or reusing existing ones in new ways

 If possible, don't make change by modifying existing ones –
existing code works and changing it can introduce bugs and
errors.

 Related: Code to interfaces, not to classes

 Ex: accept a List parameter, not ArrayList or
LinkedList

 EJ Tip #52: Refer to objects by their interfaces

Cohesion again (“expert pattern”)

 The class that contains most of the data needed to

perform a task should perform the task

 counterexample: A class with lots of getters but not a

lot of methods that actually do work – this relies on

other classes to “get” the data and process it externally

 Reduce duplication

 Only one class should be responsible for maintaining a

set of data, even (especially) if it is used by many other

classes

Invariants

 Class invariant: An assertion that is true about every

object of a class throughout each object’s lifetime

 Ex: A BankAccount's balance will never be negative

 State them in your documentation, and enforce them

in your code

10/17/2011

3

Documenting a class

 Keep internal and external documentation separate

 external: /** ... */ Javadoc for classes and
methods

 Describes things that clients need to know about the class

 Should be specific enough to exclude unacceptable
implementations, but general enough to allow for all correct
implementations

 Includes all pre/postconditons and class invariants

 internal: // comments inside method bodies

 Describes details of how the code is implemented

 Information that clients wouldn't and shouldn't need, but a
fellow developer working on this class would want

The role of documentation
From Kernighan and Plauger

 If a program is incorrect, it matters little what the docs say

 If documentation does not agree with code, it is not worth
much

 Consequently, code must largely document itself. If not,
rewrite the code rather than increasing the documentation of
the existing complex code. Good code needs fewer
comments than bad code.

 Comments should provide additional information from the
code itself. They should not echo the code.

 Mnemonic variable names and labels, and a layout that
emphasizes logical structure, help make a program self-
documenting

Static vs. non-static design

 What members should be static?

 members that are related to an entire class

 not related to the data inside a particular object of that
class’s type

 Should I have to construct an object just to call this method?

 Examples
 Time.fromString

 Math.pow

 Calendar.getInstance

 NumberFormatter.getCurrencyInstance

 Arrays.toString? Collections.sort?

Public vs. private design

 Strive to minimize the public interface of the classes you
write

 Clients like classes that are simple to use and understand

 Reasoning is easier with narrower interfaces and
specifications

 Achieve a minimal public interface by
 Removing unnecessary methods – consider each one

 Making everything private unless absolutely necessary

 Pulling out unrelated behavior into a separate class

 public static constants are okay if declared final

 But still better to have a public static method to get the
value; why?

Choosing types

 Numbers: Favor int and long for most numeric computations

 EJ Tip #48: Avoid float and double if exact answers are required

 Classic example: Representing money (round-off is bad here)

 Favor the use of collections (e.g. lists) over arrays

 Strings are often overused since much data comes in as text

 Consider use of enums, even with only two values – which of the
following is better?

 oven.setTemp(97, true);
oven.setTemp(97, Temperature.CELSIUS);

 Wrapper types should be used minimally (usually with collections)

 EJ Tip #49: Prefer primitive types to boxed primitives (that is, Integer,
Float, etc.)

 Bad: public Counter(Character ch)

Independence of views

 Confine user interaction to a core set of “view” classes and
isolate these from the classes that maintain the key system
data

 Ex: ShoppingMain

 Do not put println statements in your core classes

 This locks your code into a text representation

 Makes it less useful if the client wants a GUI, a web app, etc.

 Instead, have your core classes return data that can be
displayed by the view classes – which of the following is
better?

 public void printMyself()

public String toString()

10/17/2011

4

Next steps

UW CSE331 Autumn 2011

 Assignment 3: out today, pairs assigned, groups created

 Assignment 3: now due Sunday October 30, 11:59PM

 Lectures: W and F (Design Patterns)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

