
10/19/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

DESIGN PATTERNS I

Autumn 2011

Published in 1994

Today’s amazon.com stats

Inspired in part by

What is a design pattern?

 A standard solution to a common programming problem

 a design or implementation structure that achieves a
particular purpose

 a high-level programming idiom

 A technique for making code more flexible

 reduce coupling among program components

 Shorthand for describing program design

 a description of connections among program components
(static structure)

 the shape of a heap snapshot or object model (dynamic
structure)

Why design patterns?

UW CSE331 Autumn 2011

 Advanced programming languages like Java
provide lots of powerful constructs – subtyping,
interfaces, rich types and libraries, etc.

 By the nature of programming languages, they can’t
make everything easy to solve

 To the first order, design patterns are intended to
overcome common problems that arise in even
advanced object-oriented programming languages

 They increase your vocabulary and your intellectual
toolset

No programming

language is, or

ever will be,

perfect.

Extra-language

solutions (tools,

design patterns,

etc.) are needed

as well.

Perlis: “When

someone says ‘I

want a

programming

language in

which I need

only say what I

wish done,’ give

him a lollipop.”

From a colleague

UW CSE331 Autumn 2011

 FML. Today I got to write (in Java):

import java.util.Set;
import com.google.common.base.Function;
import com.google.common.collect.DiscreteDomains;
import com.google.common.collect.Iterables;
import com.google.common.collect.Ranges;

final int x = ...;
Set<Integer> indices =
 Ranges.closed(0, size).asSet(DiscreteDomains.integers());
Iterable<Coord> coords =
 Iterables.transform(indices, new Function<Integer,Coord>(){
 public Coord apply (Integer y) {
 return new Coord(x, y);
 }
 }
);

when I wanted to write (in Scala):

val x = ...;
val coords = 0 to size map(Coord(x, _))

Whence design patterns?

UW CSE331 Autumn 2011

 The Gang of Four (GoF)  – Gamma, Helm,
Johnson, Vlissides

 Each an aggressive and thoughtful
programmer

 Empiricists, not theoreticians

 Found they shared a number of “tricks” and
decided to codify them – a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

My first experience

with patterns at

Dagstuhl  with

Helms and Vlissides

Patterns vs. patterns

UW CSE331 Autumn 2011

 The phrase “pattern” has been wildly overused since
the GoF patterns have been introduced

 “pattern” has become a synonym for “[somebody says]
X is a good way to write programs.”
 And “anti-pattern” has become a synonym for “[somebody

says] Y is a bad way to write programs.”

 A graduate student recently studied so-called “security
patterns” and found that very few of them were really
GoF-style patterns

 GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

http://c2.com/cgi/wiki?GangOfFour
http://www.dagstuhl.de/

10/19/2011

2

An example of a GoF pattern

UW CSE331 Autumn 2011

 Given a class C, what if you want to guarantee that

there is precisely one instance of C in your

program? And you want that instance globally

available?

 First, why might you want this?

 Second, how might you achieve this?

Possible reasons for Singleton

UW CSE331 Autumn 2011

 One RandomNumber generator

 One Restaurant, one ShoppingCart

 One KeyboardReader, etc…

 Make it easier to ensure some key invariants

 Make it easier to control when that single instance is

created – can be important for large objects

 …

Several solutions

UW CSE331 Autumn 2011

public class Singleton {
 private static final Singleton instance
 = new Singleton(); // Private constructor prevents
 // instantiation from other classes
 private Singleton() { }
 public static Singleton getInstance() {
 return instance;
 }
}

public class Singleton {
 private static Singleton _instance;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (null == _instance) {
 _instance = new Singleton();
 } return _instance;
 }
}

Eager allocation

of instance

Lazy allocation

of instance

And there are more (in EJ, for instance)

GoF patterns: three categories

 Creational Patterns – these abstract the object-
instantiation process
 Factory Method, Abstract Factory, Singleton,
Builder, Prototype

 Structural Patterns – these abstract how objects/classes
can be combined
 Adapter, Bridge, Composite, Decorator, Façade,
Flyweight, Proxy

 Behavioral Patterns – these abstract communication
between objects
 Command, Interpreter, Iterator, Mediator,
Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method

Creational patterns: Factory method

 Constructors in Java are inflexible

 Can't return a subtype of the class they belong to

 Always return a fresh new object, never re-use one

 Problem: client desires control over object creation

 Factory method

 Hides decisions about object creation

 Implementation: put code in methods in client

 Factory object

 Bundles factory methods for a family of types

 Implementation: put code in a separate object

 Prototype

 Every object is a factory, can create more objects like itself

 Implementation: put code in clone methods

Motivation for factories:

Changing implementations

 Supertypes support multiple implementations
 interface Matrix { ... }

 class SparseMatrix implements Matrix { ... }

 class DenseMatrix implements Matrix { ... }

 Clients use the supertype (Matrix)

 Still need to use a SparseMatrix or DenseMatrix

constructor

 Switching implementations requires code changes

10/19/2011

3

Use of factories

 Factory
class MatrixFactory {

 public static Matrix createMatrix() {

 return new SparseMatrix();

 }

}

 Clients call createMatrix, not a particular constructor

 Advantages

 To switch the implementation, only change one place

 Implementation can decide what type of matrix to create

Example: bicycle race

class Race {

 // factory method

 Race createRace() {

 Bicycle bike1 = new Bicycle();

 Bicycle bike2 = new Bicycle();

 ...

 }

} CreateRace is a factory method – why is it in Race?

Example: Tour de France

class TourDeFrance extends Race {

 // factory method

 Race createRace() {

 Bicycle bike1 = new RoadBicycle();

 Bicycle bike2 = new RoadBicycle();

 ...

 }

}

Example: Cyclocross

class Cyclocross extends Race {

 // factory method

 Race createRace() {

 Bicycle bike1 = new MountainBicycle();

 Bicycle bike2 = new MountainBicycle();

 ...

 }

}

Factory method for Bicycle

Code using that method
class Race {

 Bicycle createBicycle() { ... }

 Race createRace() {

 Bicycle bike1 = createBicycle();

 Bicycle bike2 = createBicycle();

 ...

 }

}

class TourDeFrance extends Race {

 Bicycle createBicycle() {

 return new RoadBicycle();

 }

}

class Cyclocross extends Race {

 Bicycle createBicycle() {

 return new MountainBicycle();

 }

}

Factory objects/classes

encapsulate factory methods

class BicycleFactory {

 Bicycle createBicycle() { ... }

 Frame createFrame() { ... }

 Wheel createWheel() { ... }

 ...

}

class RoadBicycleFactory extends BicycleFactory {

 Bicycle createBicycle() {

 return new RoadBicycle();

 }

}

class MountainBicycleFactory extends BicycleFactory {

 Bicycle createBicycle() {

 return new MountainBicycle();

 }

}

10/19/2011

4

Using a factory object

class Race {

 BicycleFactory bfactory;

 Race() { bfactory = new BicycleFactory(); } // constructor

 Race createRace() {

 Bicycle bike1 = bfactory.createBicycle();

 Bicycle bike2 = bfactory.createBicycle(); …

 }

}

class TourDeFrance extends Race {

 TourDeFrance() { bfactory = new RoadBicycleFactory(); } // constructor

}

class Cyclocross extends Race {

 Cyclocross() { bfactory = new MountainBicycleFactory(); } // constructor

}

Separate control over bicycles and

races

class Race {

 BicycleFactory bfactory;

 // constructor

 Race(BicycleFactory bfactory) { this.bfactory = bfactory; }

 Race createRace() {

 Bicycle bike1 = bfactory.completeBicycle();

 Bicycle bike2 = bfactory.completeBicycle();

 ...

 }

}

// No special constructor for TourDeFrance or for Cyclocross

 Now we can specify the race and the bicycle separately

new TourDeFrance(new TricycleFactory())

A semi-aside: inversion of control

UW CSE331 Autumn 2011

 A number of modern design techniques – including
many design patterns – exploit a notion mentioned in
an earlier lecture: inversion of control

 In conventional flow-of-control, methods are called or
invoked by name
double area = rectangle1.height() * rectangle1.width()

 The intent is to have the called method perform an
action that the client needs to work properly – almost
always, the result of the call is material to the post-
condition of the caller either directly or indirectly

 This is true even if the exact method to be called is less
clear due to overloading and/or overriding

Conventional flow-of-control

UW CSE331 Autumn 2011

 For method A to call method B, A needs to know the

name of B – usually, B’s class is imported

 This is vaguely like a telephone call – you can only

call person P if you know his or her phone number N

 A phone book gives you a way to find out the

association between people and numbers

 Kind of like the JDK gives you a way to find the

association between computations you want and which

methods perform those computations

Inversion of control

UW CSE331 Autumn 2011

 At times, it is beneficial to be able
to have method A invoke method B
without knowing the name of B

 Like from several lectures ago –
Timer can invoke
TimeToStretch without Timer
knowing its name

 Timer knows that something is
invoked, but doesn’t care what in
the sense that Timer’s post-
condition does not depend on any
information computed by or
returned by “whatever” is invoked

 Sometimes referred to as
Hollywood’s principle: “Don't call us,
we'll call you”

invokes doesn’t coincide with names

UW CSE331 Autumn 2011

 In inversion of control, the invokes relation (which methods call
which other methods) does not coincide with the names relation
(which methods know the names of which other methods)

 Like the phone analogy, this is vaguely similar to radio or TV
broadcasting – the broadcasting station doesn’t know the names of
the listeners, even though it is providing content to them

 However, the listeners know the name (the frequency or the channel) of
the station

 This allows some kinds of valuable flexibility in programs – for
example, the actual task invoked by the Timer can be changed
without modifying Timer, which increases the ease of reusing it

 And TimeToStretch may also be more reusable due to more
constrained dependences

10/19/2011

5

But wait!

UW CSE331 Autumn 2011

 Notkin said this class would focus on correctness far more than
anything else (including performance, ease of change, etc.)

 But inversion of control at its core is intended to add flexibility,
making things easier to change

 Well, yes… but …

 Allowing programs to change in a more disciplined way serves
correctness by leaving more components unchanged

 There can be a clearer distinction between invocations that require some
specific behavior vs. those that require much simpler properties of the
invoked (but unnamed) methods

 At the same time, inversion of control can also make some aspects of
correctness more complicated – and this is one reason that the
disciplined use of it in design patterns is a plus

Next steps

UW CSE331 Autumn 2011

 Assignment 3: due Sunday October 30, 11:59PM

 Lectures: F (Design Patterns)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

Characteristic problems

UW CSE331 Autumn 2011

 Representation exposure problem

 Violate the representation invariant; dependences
complicate changing the implementation

 Hiding some components may permit only stylized
access to the object

 This may cause the interface to

 Disadvantages:

 Interface may not (efficiently) provide all desired
operations

 Indirection may reduce performance

