[
AParteen Language

Today’s amazon.com stats

n Tools & Techniques

CSE 331
SOFTWARE DESIGN & IMPLEMENTATION
DESIGN PATTERNS |

10/19/2011

What is a design pattern2

o A standard solution to a common programming problem

a design or implementation structure that achieves a
particular purpose

a high-level programming idiom

o A technique for making code more flexible
reduce coupling among program components

0 Shorthand for describing program design
a description of connections among program components
(static structure)
the shape of a heap snapshot or object model (dynamic
structure)

Why design patterns?

1 Advanced programming languages like Java
provide lots of powerful constructs — subtyping,
interfaces, rich types and libraries, etc.

0 By the nature of programming languages, they can’t
make everything easy to solve

0 To the first order, design patterns are intended to
overcome common problems that arise in even
advanced object-oriented programming languages

0 They increase your vocabulary and your intellectual
toolset

UW CSE331 Autumn 2011

o

No programming
language is, or
ever will be,
perfect.

From a colleague

FML. Today | got to write (in Java): Extra-language
solutions (tools,
design patterns,

etc.) are needed

import java.util.Set;
import com.google.common.base.Function;

import com.google.common.collect.DiscreteDomains;
import com.google.common.collect.Iterables;
import com.google.common.collect.Ranges;

final int x = ...; Sehell
Set<Integer> indices =
Ranges.closed (0, size).asSet(DiscreteDomains.integers()); PO
Iterable<Coord> coords = Perlis: “When
Tterables.transform(indices, new Function<Integer,Coord>(){ q
public Coord apply (Integer y) { someone says
return new Coord(x, y); want a
) Ri programming
language in

when | wanted to write (in Scala): which | need

only say what |

wish done,’ give

him a lollipop.”
UW CSE331 Autumn 2011

val x = ...;
val coords = 0 to size map(Coord(x, _))

Whence design patterns?

o The Gang of Four (GoF) () — Gamma, Helm,

Johnson, Vlissides

My first experience
with patterns at
Dagstuhl with
Helms and Vlissides

0 Each an aggressive and thoughtful
programmer

0 Empiricists, not theoreticians

0 Found they shared a number of “tricks” and
decided to codify them — a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

UW CSE331 Autumn 2011

gjoﬁerns vs. patterns

0 The phrase “pattern” has been wildly overused since
the GoF patterns have been introduced

0 “pattern” has become a synonym for “[somebody says]
X is a good way to write programs.”

And “anti-pattern” has become a synonym for “[somebody
says] Y is a bad way to write programs.”

o A graduate student recently studied so-called “security
patterns” and found that very few of them were really
GoF-style patterns

11 GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

UW CSE331 Autumn 2011

http://c2.com/cgi/wiki?GangOfFour
http://www.dagstuhl.de/

10/19/2011

An example of a GoF pattern

Given a class C, what if you want to guarantee that
there is precisely one instance of C in your
program? And you want that instance globally
available?

First, why might you want this2

Second, how might you achieve this2

UW CSE331 Autumn 2011

Possible reasons for Singleton

One RandomNumber generator

One Restaurant, one ShoppingCart
One KeyboardReader, efc...

Make it easier to ensure some key invariants

Make it easier to control when that single instance is
created — can be important for large objects

UW CSE331 Autumn 2011

Several solutions

public class Singleton {
private static final Singleton instance
= new Singleton(); // Private constructor prevents
// instantiation from other classes
private Singleton() { }
pul;étsr:tixgiaiég?leton getInstance () { Euger.allocaﬁon
) of instance

}

public class Singleton {
private static Singleton _instance;
private Singleton() { }
public static synchronized Singleton getInstance() {

if (null == _instance) {
_instance = new Singleton(); .
} return _instance; Lazy allocation

} of instance

}

And there are more (in EJ, for instance) UW CSES31 Autumn 2011

GoF patterns: three categories

Creational Patterns — these abstract the object-
instantiation process
Factory Method, Abstract Factory, Singleton,
Builder, Prototype
Structural Patterns — these abstract how objects/classes
can be combined
Adapter, Bridge, Composite, Decorator, Fagade,
Flyweight, Proxy
Behavioral Patterns — these abstract communication
between objects

Command, Interpreter, Iterator, Mediator,
Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method

Creational patterns: Factory method

Constructors in Java are inflexible
Can't return a subtype of the class they belong to
Always return a fresh new obiject, never re-use one
Problem: client desires control over object creation
Factory method
Hides decisions about object creation
Implementation: put code in methods in client
Factory object
Bundles factory methods for a family of types
Implementation: put code in a separate object
Prototype
Every object is a factory, can create more objects like itself
Implementation: put code in clone methods

Motivation for factories:
Changing implementations

Supertypes support multiple implementations

interface Matrix { ... }
class SparseMatrix implements Matrix { ... }
class DenseMatrix implements Matrix { ... }

Clients use the supertype (Matrix)

Still need to use a SparseMatrix or DenseMatrix
constructor

Switching implementations requires code changes

10/19/2011

class TourDeFrance extends Race {
// factory method
Race createRace() {
Bicycle bikel = new RoadBicycle();
Bicycle bike2 = new RoadBicycle();

Use of factories Example: bicycle race
| |
o Facfory class Race {
class MatrixFactory { // factory method
public static Matrix createMatrix() { Race createRace() {
return new SparseMatrix(); Bicycle bikel = new Bicycle();
} Bicycle bike2 = new Bicycle();
}
o1 Clients call createMatrix, not a particular constructor }
o Advanfcges } CreateRace is a factory method — why is it in Race?
To switch the implementation, only change one place
Implementation can decide what type of matrix to create
Example: Tour de France Example: Cyclocross
|

class Cyclocross extends Race {
// factory method
Race createRace() {
Bicycle bikel = new MountainBicycle();
Bicycle bike2 = new MountainBicycle();

Factory method for Bicycle
Code using that method

class Race {
Bicycle createBicycle() { ... }
Race createRace() {

Bicycle bikel = createBicycle();

Bicycle bike2 = createBicycle();
}

}

class TourDeFrance extends Race {
Bicycle createBicycle() {
return new RoadBicycle();
}
}

class Cyclocross extends Race {
Bicycle createBicycle() {
return new MountainBicycle () ;
}
}

Factory objects/classes
encapsulate factory methods

class BicycleFactory {
Bicycle createBicycle() { ... }
Frame createFrame() { ... }
Wheel createWheel() { ... }

}

class RoadBicycleFactory extends BicycleFactory {
Bicycle createBicycle() {
return new RoadBicycle();
}
}

class MountainBicycleFactory extends BicycleFactory {
Bicycle createBicycle() {
return new MountainBicycle();

}

10/19/2011

Using a factory object

class Race {
BicycleFactory bfactory;
Race() { bfactory = new BicycleFactory(); } // constructor
Race createRace() {
Bicycle bikel = bfactory.createBicycle();
Bicycle bike2 = bfactory.createBicycle(); ..
}
}

class TourDeFrance extends Race {
TourDeFrance() { bfactory = new RoadBicycl 0y /7
}

class Cyclocross extends Race {

Cyclocross() { bfactory = new MountainBicycl Oy 17
}

Separate control over bicycles and
races

class Race {
BicycleFactory bfactory;
// constructor
Race (BicycleFactory bfactory) { this.bfactory = bfactory; }
Race createRace() {
Bicycle bikel = bfactory.completeBicycle() ;
Bicycle bike2 = bfactory.completeBicycle() ;

}
}

// No special constructor for TourDeFrance or for Cyclocross

Now we can specify the race and the bicycle separately

new TourDeFrance (new TricycleFactory())

A semi-aside: inversion of control

A number of modern design techniques — including
many design patterns — exploit a notion mentioned in
an earlier lecture: inversion of control

In conventional flow-of-control, methods are called or
invoked by name

double area = rectanglel.height() * rectanglel.width()
The intent is to have the called method perform an
action that the client needs to work properly — almost
always, the result of the call is material to the post-
condition of the caller either directly or indirectly

This is true even if the exact method to be called is less
clear due to overloading and/or overriding

UW CSE331 Autumn 2011

Conventional flow-of-control

For method A to call method B, A needs to know the

name of B — usually, B’s class is imported

This is vaguely like a telephone call — you can only

call person P if you know his or her phone number N
A phone book gives you a way to find out the
association between people and numbers

Kind of like the JDK gives you a way to find the
association between computations you want and which
methods perform those computations

UW CSE331 Autumn 2011

Inversion of control

At times, it is beneficial to be able
to have method A invoke method B

without knowing the name of B

r Main v3
Like from several lectures ago —
Timer can invoke -
TimeToStretch without Timer oo el B bt s
knowing its name Use @ callbotk fo invert a dependency

This diagram shaws the Inversion of the dependancy between
Timax ond TinaTostraten ompared 1o v1)

Timer knows that something is
invoked, but doesn’t care what in

Wain uper o Timar.

the sense that Timer’s post- Man P i SO
condition does not depend on any \
information computed by or \ [Dl e

returned by “whatever” is invoked

Sometimes referred to

as
Hollywood’s principle: “Don't call us,
we'll call you”

UW CSE331 Autumn 2011

invokes doesn’t coincide with names

In inversion of control, the invokes relation (which methods call
which other methods) does not coincide with the names relation
(which methods know the names of which other methods)
Like the phone analogy, this is vaguely similar to radio or TV
broadcasting — the broadcasting station doesn’t know the names of
the listeners, even though it is providing content to them
However, the listeners know the name (the frequency or the channel) of
the station
This allows some kinds of valuable flexibility in programs — for
example, the actual task invoked by the Timer can be changed
without modifying Timer, which increases the ease of reusing it
And TimeToStretch may also be more reusable due to more
constrained dependences

UW CSE331 Autumn 2011

10/19/2011

But wait!

Notkin said this class would focus on correctness far more than
anything else (including performance, ease of change, etc.)
But inversion of control at its core is intended to add flexibility,
making things easier to change
Well, yes... but ...
Allowing programs to change in a more disciplined way serves
correctness by leaving more components unchanged
There can be a clearer distinction between invocations that require some
specific behavior vs. those that require much simpler properties of the
invoked (but unnamed) methods
At the same time, inversion of control can also make some aspects of
correctness more complicated — and this is one reason that the
disciplined use of it in design patterns is a plus

UW CSE331 Autumn 2011

Next steps

Assignment 3: due Sunday October 30, 11:59PM
Lectures: F (Design Patterns)

Upcoming: Friday 10/28, in class midterm — open book, open
note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

UW CSE331 Autumn 2011

Characteristic problems

Representation exposure problem

Violate the representation invariant; dependences
complicate changing the implementation

Hiding some components may permit only stylized
access to the object

This may cause the interface to
Disadvantages:

Interface may not (efficiently) provide all desired
operations

Indirection may reduce performance

UW CSE331 Autumn 2011

