
10/19/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

DESIGN PATTERNS I

Autumn 2011

Published in 1994

Today’s amazon.com stats

Inspired in part by

What is a design pattern?

 A standard solution to a common programming problem

 a design or implementation structure that achieves a
particular purpose

 a high-level programming idiom

 A technique for making code more flexible

 reduce coupling among program components

 Shorthand for describing program design

 a description of connections among program components
(static structure)

 the shape of a heap snapshot or object model (dynamic
structure)

Why design patterns?

UW CSE331 Autumn 2011

 Advanced programming languages like Java
provide lots of powerful constructs – subtyping,
interfaces, rich types and libraries, etc.

 By the nature of programming languages, they can’t
make everything easy to solve

 To the first order, design patterns are intended to
overcome common problems that arise in even
advanced object-oriented programming languages

 They increase your vocabulary and your intellectual
toolset

No programming

language is, or

ever will be,

perfect.

Extra-language

solutions (tools,

design patterns,

etc.) are needed

as well.

Perlis: “When

someone says ‘I

want a

programming

language in

which I need

only say what I

wish done,’ give

him a lollipop.”

From a colleague

UW CSE331 Autumn 2011

 FML. Today I got to write (in Java):

import java.util.Set;
import com.google.common.base.Function;
import com.google.common.collect.DiscreteDomains;
import com.google.common.collect.Iterables;
import com.google.common.collect.Ranges;

final int x = ...;
Set<Integer> indices =
 Ranges.closed(0, size).asSet(DiscreteDomains.integers());
Iterable<Coord> coords =
 Iterables.transform(indices, new Function<Integer,Coord>(){
 public Coord apply (Integer y) {
 return new Coord(x, y);
 }
 }
);

when I wanted to write (in Scala):

val x = ...;
val coords = 0 to size map(Coord(x, _))

Whence design patterns?

UW CSE331 Autumn 2011

 The Gang of Four (GoF) – Gamma, Helm,
Johnson, Vlissides

 Each an aggressive and thoughtful
programmer

 Empiricists, not theoreticians

 Found they shared a number of “tricks” and
decided to codify them – a key rule was that
nothing could become a pattern unless they
could identify at least three real examples

My first experience

with patterns at

Dagstuhl with

Helms and Vlissides

Patterns vs. patterns

UW CSE331 Autumn 2011

 The phrase “pattern” has been wildly overused since
the GoF patterns have been introduced

 “pattern” has become a synonym for “[somebody says]
X is a good way to write programs.”
 And “anti-pattern” has become a synonym for “[somebody

says] Y is a bad way to write programs.”

 A graduate student recently studied so-called “security
patterns” and found that very few of them were really
GoF-style patterns

 GoF-style patterns have richness, history, language-
independence, documentation and thus (most likely) far
more staying power

http://c2.com/cgi/wiki?GangOfFour
http://www.dagstuhl.de/

10/19/2011

2

An example of a GoF pattern

UW CSE331 Autumn 2011

 Given a class C, what if you want to guarantee that

there is precisely one instance of C in your

program? And you want that instance globally

available?

 First, why might you want this?

 Second, how might you achieve this?

Possible reasons for Singleton

UW CSE331 Autumn 2011

 One RandomNumber generator

 One Restaurant, one ShoppingCart

 One KeyboardReader, etc…

 Make it easier to ensure some key invariants

 Make it easier to control when that single instance is

created – can be important for large objects

 …

Several solutions

UW CSE331 Autumn 2011

public class Singleton {
 private static final Singleton instance
 = new Singleton(); // Private constructor prevents
 // instantiation from other classes
 private Singleton() { }
 public static Singleton getInstance() {
 return instance;
 }
}

public class Singleton {
 private static Singleton _instance;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (null == _instance) {
 _instance = new Singleton();
 } return _instance;
 }
}

Eager allocation

of instance

Lazy allocation

of instance

And there are more (in EJ, for instance)

GoF patterns: three categories

 Creational Patterns – these abstract the object-
instantiation process
 Factory Method, Abstract Factory, Singleton,
Builder, Prototype

 Structural Patterns – these abstract how objects/classes
can be combined
 Adapter, Bridge, Composite, Decorator, Façade,
Flyweight, Proxy

 Behavioral Patterns – these abstract communication
between objects
 Command, Interpreter, Iterator, Mediator,
Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method

Creational patterns: Factory method

 Constructors in Java are inflexible

 Can't return a subtype of the class they belong to

 Always return a fresh new object, never re-use one

 Problem: client desires control over object creation

 Factory method

 Hides decisions about object creation

 Implementation: put code in methods in client

 Factory object

 Bundles factory methods for a family of types

 Implementation: put code in a separate object

 Prototype

 Every object is a factory, can create more objects like itself

 Implementation: put code in clone methods

Motivation for factories:

Changing implementations

 Supertypes support multiple implementations
 interface Matrix { ... }

 class SparseMatrix implements Matrix { ... }

 class DenseMatrix implements Matrix { ... }

 Clients use the supertype (Matrix)

 Still need to use a SparseMatrix or DenseMatrix

constructor

 Switching implementations requires code changes

10/19/2011

3

Use of factories

 Factory
class MatrixFactory {

 public static Matrix createMatrix() {

 return new SparseMatrix();

 }

}

 Clients call createMatrix, not a particular constructor

 Advantages

 To switch the implementation, only change one place

 Implementation can decide what type of matrix to create

Example: bicycle race

class Race {

 // factory method

 Race createRace() {

 Bicycle bike1 = new Bicycle();

 Bicycle bike2 = new Bicycle();

 ...

 }

} CreateRace is a factory method – why is it in Race?

Example: Tour de France

class TourDeFrance extends Race {

 // factory method

 Race createRace() {

 Bicycle bike1 = new RoadBicycle();

 Bicycle bike2 = new RoadBicycle();

 ...

 }

}

Example: Cyclocross

class Cyclocross extends Race {

 // factory method

 Race createRace() {

 Bicycle bike1 = new MountainBicycle();

 Bicycle bike2 = new MountainBicycle();

 ...

 }

}

Factory method for Bicycle

Code using that method
class Race {

 Bicycle createBicycle() { ... }

 Race createRace() {

 Bicycle bike1 = createBicycle();

 Bicycle bike2 = createBicycle();

 ...

 }

}

class TourDeFrance extends Race {

 Bicycle createBicycle() {

 return new RoadBicycle();

 }

}

class Cyclocross extends Race {

 Bicycle createBicycle() {

 return new MountainBicycle();

 }

}

Factory objects/classes

encapsulate factory methods

class BicycleFactory {

 Bicycle createBicycle() { ... }

 Frame createFrame() { ... }

 Wheel createWheel() { ... }

 ...

}

class RoadBicycleFactory extends BicycleFactory {

 Bicycle createBicycle() {

 return new RoadBicycle();

 }

}

class MountainBicycleFactory extends BicycleFactory {

 Bicycle createBicycle() {

 return new MountainBicycle();

 }

}

10/19/2011

4

Using a factory object

class Race {

 BicycleFactory bfactory;

 Race() { bfactory = new BicycleFactory(); } // constructor

 Race createRace() {

 Bicycle bike1 = bfactory.createBicycle();

 Bicycle bike2 = bfactory.createBicycle(); …

 }

}

class TourDeFrance extends Race {

 TourDeFrance() { bfactory = new RoadBicycleFactory(); } // constructor

}

class Cyclocross extends Race {

 Cyclocross() { bfactory = new MountainBicycleFactory(); } // constructor

}

Separate control over bicycles and

races

class Race {

 BicycleFactory bfactory;

 // constructor

 Race(BicycleFactory bfactory) { this.bfactory = bfactory; }

 Race createRace() {

 Bicycle bike1 = bfactory.completeBicycle();

 Bicycle bike2 = bfactory.completeBicycle();

 ...

 }

}

// No special constructor for TourDeFrance or for Cyclocross

 Now we can specify the race and the bicycle separately

new TourDeFrance(new TricycleFactory())

A semi-aside: inversion of control

UW CSE331 Autumn 2011

 A number of modern design techniques – including
many design patterns – exploit a notion mentioned in
an earlier lecture: inversion of control

 In conventional flow-of-control, methods are called or
invoked by name
double area = rectangle1.height() * rectangle1.width()

 The intent is to have the called method perform an
action that the client needs to work properly – almost
always, the result of the call is material to the post-
condition of the caller either directly or indirectly

 This is true even if the exact method to be called is less
clear due to overloading and/or overriding

Conventional flow-of-control

UW CSE331 Autumn 2011

 For method A to call method B, A needs to know the

name of B – usually, B’s class is imported

 This is vaguely like a telephone call – you can only

call person P if you know his or her phone number N

 A phone book gives you a way to find out the

association between people and numbers

 Kind of like the JDK gives you a way to find the

association between computations you want and which

methods perform those computations

Inversion of control

UW CSE331 Autumn 2011

 At times, it is beneficial to be able
to have method A invoke method B
without knowing the name of B

 Like from several lectures ago –
Timer can invoke
TimeToStretch without Timer
knowing its name

 Timer knows that something is
invoked, but doesn’t care what in
the sense that Timer’s post-
condition does not depend on any
information computed by or
returned by “whatever” is invoked

 Sometimes referred to as
Hollywood’s principle: “Don't call us,
we'll call you”

invokes doesn’t coincide with names

UW CSE331 Autumn 2011

 In inversion of control, the invokes relation (which methods call
which other methods) does not coincide with the names relation
(which methods know the names of which other methods)

 Like the phone analogy, this is vaguely similar to radio or TV
broadcasting – the broadcasting station doesn’t know the names of
the listeners, even though it is providing content to them

 However, the listeners know the name (the frequency or the channel) of
the station

 This allows some kinds of valuable flexibility in programs – for
example, the actual task invoked by the Timer can be changed
without modifying Timer, which increases the ease of reusing it

 And TimeToStretch may also be more reusable due to more
constrained dependences

10/19/2011

5

But wait!

UW CSE331 Autumn 2011

 Notkin said this class would focus on correctness far more than
anything else (including performance, ease of change, etc.)

 But inversion of control at its core is intended to add flexibility,
making things easier to change

 Well, yes… but …

 Allowing programs to change in a more disciplined way serves
correctness by leaving more components unchanged

 There can be a clearer distinction between invocations that require some
specific behavior vs. those that require much simpler properties of the
invoked (but unnamed) methods

 At the same time, inversion of control can also make some aspects of
correctness more complicated – and this is one reason that the
disciplined use of it in design patterns is a plus

Next steps

UW CSE331 Autumn 2011

 Assignment 3: due Sunday October 30, 11:59PM

 Lectures: F (Design Patterns)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

Characteristic problems

UW CSE331 Autumn 2011

 Representation exposure problem

 Violate the representation invariant; dependences
complicate changing the implementation

 Hiding some components may permit only stylized
access to the object

 This may cause the interface to

 Disadvantages:

 Interface may not (efficiently) provide all desired
operations

 Indirection may reduce performance

