
10/21/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

DESIGN PATTERNS II

Autumn 2011

Prototype pattern

 Every object is itself a factory

 Each class contains a clone method that creates a
copy of the receiver object
class Bicyle {

 Bicycle clone() { ... }

}

 Often, Object is the return type of clone
 clone is declared in Object

 Design flaw in Java 1.4 and earlier: the return type may
not change covariantly in an overridden method
 That is, the return type could not be made more restrictive

 This is a problem for achieving true subtyping

Using prototypes

class Race {

 Bicycle bproto;

 // constructor

 Race(Bicycle bproto) { this.bproto = bproto; }

 Race createRace() {

 Bicycle bike1 = (Bicycle) bproto.clone();

 Bicycle bike2 = (Bicycle) bproto.clone();

 ...

 }

}

 Again, we can specify the race and the bicycle separately

new TourDeFrance(new Tricycle())

Dependency injection

 Change the factory without changing the code with external
dependency injection
BicycleFactory f = ((BicycleFactory)
 DependencyManager.get("BicycleFactory"));
Race r = new TourDeFrance(f);

 Plus an external file

<service-point id=“BicycleFactory">

 <invoke-factory>

 <construct class=“Bicycle">

 <service>Tricycle</service>

 </construct>

 </invoke-factory>

</service-point>

+ Change the factory without recompiling

- Harder to understand (for example,

without changing any Java code the

program might call a different factory)

A brief aside: call graphs

UW CSE331 Autumn 2011

 A call graph is a set of pairs describing, for a given program, which units
(usually methods) call other units (usually methods)

 Eclipse, for example, has a Call Hierarchy view (where the Callee
Hierarchy option is often best) that is at times useful in programming
{<main,readCatalog(String)>,

 <readCatalog(String),readCatalog(InputStream)>,

 …}

 This is a static call graph – analyze the program and return a call graph
representing all calls that could happen in any possible execution of the
program

 (A dynamic call graph is one built by executing the program one or more
times and returning all calls that did take place in those executions)

 Static call graphs are generally expected to be “conservative” –
that is, there are no false negatives, meaning that every <A,B> that
can ever be invoked over any execution is included in the call graph

Precision

UW CSE331 Autumn 2011

 Of course, there’s an easy algorithm to create a not-very-useful static call
graph

 for (m : method)
 for (n : method)
 include <m,n> in call graph

 A question is precision – how many false positives are included (<A,B> that are
included to be conservative but that cannot ever be executed)?

 And inversion-of-control complicates this further – using the dependency
injection pattern, for example, creates a static connection between
<client,Tricycle> that would require quite complex analysis to report

 In practice all or almost all inversion-of-control invocations are omitted in static call graphs

 Even if a programmer is not using a static call graph, he or she is going through similar
reasoning, and can also become confused or required to analyze in more detail in the
face of inversion-of-control – so be thoughtful and careful about this issue!

 This fuzzy connection can make it harder to understand and to change a program,
although it can also make it easier to change a program – that’s right, it can make it
harder and easier to change at the same time

10/21/2011

2

Sharing

 Interning: only one object with a particular

(abstract) value exists at run-time

 Factory method returns an existing object, not a new

one

 Flyweight: separate intrinsic and extrinsic state,

represent them separately, and intern the intrinsic

state

 Implicit representation uses no space

Interning pattern

 Reuse existing objects instead of creating new ones

 Less space

 May compare with == instead of equals()

 Permitted only for immutable objects

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

StreetSegment

without interning

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Univ. Way"
(String)

"O2139"
(String)

StreetSegment

with interning

Interning mechanism

 Maintain a collection of all objects

 If an object already appears, return that instead
HashMap<String, String> segnames; // why not
 // Set<String>?

String canonicalName(String n) {

 if (segnames.containsKey(n)) {

 return segnames.get(n);

 } else {

 segnames.put(n, n);

 return n;

 }

}

 Java builds this in for strings: String.intern()

java.lang.Boolean does not use

the Interning pattern

public class Boolean {

 private final boolean value;

 // construct a new Boolean value

 public Boolean(boolean value) {

 this.value = value;

 }

 public static Boolean FALSE = new Boolean(false);

 public static Boolean TRUE = new Boolean(true);

 // factory method that uses interning

 public static valueOf(boolean value) {

 if (value) {

 return TRUE;

 } else {

 return FALSE;

 }

 }

}

Recognition of the problem

 Javadoc for Boolean constructor

 Allocates a Boolean object representing the value argument

 Note: It is rarely appropriate to use this constructor. Unless a new
instance is required, the static factory valueOf(boolean) is
generally a better choice. It is likely to yield significantly better
space and time performance

 Josh Bloch (JavaWorld, January 4, 2004)

 The Boolean type should not have had public constructors.
There's really no great advantage to allow multiple trues or
multiple falses, and I've seen programs that produce millions of
trues and millions of falses, creating needless work for the
garbage collector

 So, in the case of immutables, I think factory methods are great

Structural patterns: Wrappers

 A wrapper translates between incompatible interfaces

 Wrappers are a thin veneer over an encapsulated class

 modify the interface

 extend behavior

 restrict access

 The encapsulated class does most of the work

Wrapper

Pattern
Functionality Interface

Adapter same different

Decorator different same

Proxy same same

10/21/2011

3

Adapter

 Change an interface without

changing functionality

 rename a method

 convert units

 implement a method in

terms of another

 Example

 Have the Rectangle class on

the top right

 Want to be able to use the

NonScaleableRectangle

class on the bottom right, which

is not a Rectangle

interface Rectangle {

 // grow or shrink by the given factor

 void scale(float factor);

 ...

 float getWidth();

 float area();

}

class myClass {

 void myMethod(Rectangle r) {

 ... r.scale(2); ...

 }

}

class NonScaleableRectangle {

void setWidth(float width) { ... }

 void setHeight(float height) { ... }

 // no scale method

 ...

}

Adapting via subclassing

class ScaleableRectangle1 extends NonScaleableRectangle

 implements Rectangle {

 void scale(float factor) {

 setWidth(factor * getWidth());

 setHeight(factor * getHeight());

 }

}

Adapting via delegation:

Forwarding requests to another object

class ScaleableRectangle2 implements Rectangle {

 NonScaleableRectangle r;

 ScaleableRectangle2(NonScaleableRectangle r) {

 this.r = r;

 }

 void scale(float factor) {

 setWidth(factor * r.getWidth());

 setHeight(factor * r.getHeight());

 }

 float getWidth() { return r.getWidth(); }

 float circumference() { return r.circumference(); }

 ...

}

Subclassing vs. delegation

 Subclassing

 automatically gives access to all methods of superclass

 built into the language (syntax, efficiency)

 Delegation

 permits cleaner removal of methods (compile-time checking)

 wrappers can be added and removed dynamically

 objects of arbitrary concrete classes can be wrapped

 multiple wrappers can be composed

 Some wrappers have qualities of more than one of
adapter, decorator, and proxy

Decorator

 Add functionality without changing the interface

 Add to existing methods to do something additional

(while still preserving the previous specification)

 Not all subclassing is decoration

Decorator: Bordered windows

interface Window {

 // rectangle bounding the window

 Rectangle bounds();

 // draw this on the specified screen

 void draw(Screen s);

 ...

}

class WindowImpl implements Window {

 ...

}

10/21/2011

4

Bordered window implementations

class BorderedWindow1 extends WindowImpl {

 void draw(Screen s) {

 super.draw(s);

 bounds().draw(s);

 }

}

class BorderedWindow2 implements Window {

 Window innerWindow;

 BorderedWindow2(Window innerWindow) {

 this.innerWindow = innerWindow;

 }

 void draw(Screen s) {

 innerWindow.draw(s);

 innerWindow.bounds().draw(s);

 }

}

Delegation permits

multiple borders, borders

and/or shading, etc.

Subclassing

A decorator can remove functionality

 Remove functionality without changing the interface

 Example: UnmodifiableList

 What does it do about methods like add and put?

Proxy

 Same interface and functionality as the wrapped class

 Control access to other objects

 communication: manage network details when using a

remote object

 locking: serialize access by multiple clients

 security: permit access only if proper credentials

 creation: object might not yet exist (creation is expensive)

 hide latency when creating object

 avoid work if object is never used

Visitor pattern

 Visitor encodes a
traversal of a
hierarchical data
structure

 Nodes – objects in the
hierarchy – accept
visitors; visitors visit
nodes

 n.accept(v)
performs a depth-first
traversal of the
structure rooted at n,
performing v's
operation on each
element of the
structure

class Node {

 void accept(Visitor v) {

 for each child of node {

 child.accept(v);

 }

 v.visit(this);

 }

}

class Visitor {

 void visit(Node n) {

 // perform work on n

 }

}

Sequence of calls to accept and visit

a

ed

cb

f

a.accept(v)

 b.accept(v)

 d.accept(v)

 v.visit(d)

 e.accept(v)

 v.visit(e)

 v.visit(b)

 c.accept(v)

 f.accept(v)

 v.visit(f)

 v.visit(c)

 v.visit(a)

 Sequence of calls to visit: <d, e, b, f, c, a>

Implementing visitor

 You must add definitions of visit and accept

 visit might count nodes, perform typechecking,
etc.

 It is easy to add operations (visitors), hard to add
nodes (modify each existing visitor)

 Visitors are similar to iterators: each element of the
data structure is presented in turn to the visit
method

 Visitors have knowledge of the structure, not just the
sequence

10/21/2011

5

Next steps

UW CSE331 Autumn 2011

 Assignment 3: due Sunday October 30, 11:59PM

 Lectures

 M (Patterns III/GUI)

 W (Midterm review, including example questions)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

