
10/24/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

GUI & (A LITTLE ON) DESIGN PATTERNS III

Autumn 2011

Why learn GUIs?

 Learn about event-driven programming techniques –
perhaps the most-used version of inversion-of-control

 Practice learning and using a large, complex API

 A chance to see how it is designed and learn from it
(design pattern usage, etc.)

 Caution: There is a ton of information for GUI
programming – huge APIs

 You won't memorize it all; you will look things up as you
need them

 But you have to learn the fundamental concepts and general
ideas

Don’t mistake…

UW CSE331 Autumn 2011

 … how to build a GUI well with …

 … what is a good UI for people

 Just another version of “building the system right vs.

building the right system”

 We’ll come back to some usability issues – much

more related to “building the right system” later in

the term

Java GUI History

 Abstract Windowing Toolkit (AWT): Sun's initial effort to
create a set of cross-platform GUI classes (JDK 1.0 - 1.1)

 Maps general Java code to each operating system's real GUI
system

 Limited to lowest common denominator; clunky to use

 Swing: A newer GUI library written from the ground up that
allows much more powerful graphics and GUI construction
(JDK 1.2+)

 Paints GUI controls itself pixel-by-pixel rather than handing off to
OS

 Better features, better compatibility, better design

 Warning: Both exist in Java now; easy to get them mixed
up; still have to use both in various places

GUI terminology

 window: A first-class citizen of the graphical desktop

 Also called a top-level container

 Ex: frame, dialog box, applet

 component: A GUI widget that resides in a window

 Also called controls in many other languages

 Ex: button, text box, label

 container: A logical grouping for storing components

 Ex: panel, box

Swing components (partial)

http://daniellemeitiv.com/2011/04/11/a-round-of-words-in-80-days-swinging-through-week-one/

10/24/2011

2

Swing inheritance hierarchy

 Component (AWT)

 Window

 Frame

 JFrame (Swing)

 JDialog

 Container

 JComponent (Swing)

 JButton JColorChooser JFileChooser

 JComboBox JLabel JList

 JMenuBar JOptionPane JPanel

 JPopupMenu JProgressBar JScrollbar

 JScrollPane JSlider JSpinner

 JSplitPane JTabbedPane JTable

 JToolbar JTree JTextArea

 JTextField ...

import java.awt.*;

import javax.swing.*;

Component properties

 Each has a get/is accessor and a set modifier

 Ex: getColor, setFont, setEnabled, isVisible

name type description

background Color background color behind component

border Border border line around component

enabled boolean whether it can be interacted with

focusable boolean whether key text can be typed on it

font Font font used for text in component

foreground Color foreground color of component

height, width int component's current size in pixels

visible boolean whether component can be seen

tooltip text String text shown when hovering mouse

size, minimum / maximum /
preferred size

Dimension various sizes, size limits, or desired sizes
that the component may take

JFrame

A window holding components

 Constructors with an optional title
public JFrame()
public JFrame(String title)

 Make a frame f appear on the screen
f.setVisible(true) public void

 Place the given component or container inside the frame f
f.add(Component comp)

 Make the frame perform a given action when it closes
public void setDefaultCloseOperation(int op)

 Common value passed: JFrame.EXIT_ON_CLOSE

 If not set, the program will never exit even if the frame is closed

 Give the frame a fixed size in pixels
public void setSize(int width, int height)

 Resize the frame to fit the components tightly
public void pack()

GUI example

import java.awt.*;

import javax.swing.*;

public class GuiExample1 {

 public static void main(String[] args) {

 JFrame frame = new JFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(new Dimension(300, 100));

 frame.setTitle("A frame");

 JButton button1 = new JButton();

 button1.setText("I'm a button.");

 button1.setBackground(Color.BLUE);

 frame.add(button1);

 JButton button2 = new JButton();

 button2.setText("Click me!");

 button2.setBackground(Color.RED);

 frame.add(button2);

 frame.setVisible(true);

 }

}

We defined two buttons, but only one is

visible. Why?

What happens when we click button2?

It’s tedious… and there is more …

UW CSE331 Autumn 2011

 Size and positioning

 Preferred/minimum sizes, absolute/relative positioning

 …

 Containers and layout

 Flow layout – laying out components in a container

 Border layout – NORTH, SOUTH, EAST, WEST, CENTER

 Grid layout

 …

 And more, lots more…

 …

GUI control structure
inversion-of-control

 event: An object representing a user's interaction with a GUI

component

 listener: An object responding to events

 To handle an event, attach a listener to a component (such as a

button)

 The listener will be notified when the event occurs (such as a

button click)

10/24/2011

3

Event-driven programming

 A programming style where the overall flow of execution is
dictated by events

 The program defines a set of listeners that wait for specific
events

 As each event happens due to a user action, the program runs
specific code

 The overall flow of execution is determined by the series of
events that occur, not a pre-determined order

 The events invoke client code (through the listeners) without
knowing which client code is invoked

 The invokes relation (in part) no longer
matches the names relation

Action events

 action event: An action on a GUI component

 The most common, general event type in Swing,

caused by

 button or menu clicks,

 check box checking / unchecking,

 pressing Enter in a text field, ...

 Represented by a class named ActionEvent

 Handled by objects that implement interface
ActionListener

Implementing a listener

public class name implements ActionListener {

 public void actionPerformed(ActionEventevent) {

 code to handle the event;

 }

}

public void addActionListener(ActionListener al)

 Attaches the given listener to be notified of clicks and

events that occur on this component

 JButton and other graphical components have this

method

Event hierarchy

 EventObject

 AWTEvent (AWT)

 ActionEvent

 TextEvent

 ComponentEvent

 FocusEvent

 WindowEvent

 InputEvent

 KeyEvent

 MouseEvent

 EventListener

 AWTEventListener

 ActionListener

 TextListener

 ComponentListener

 FocusListener

 WindowListener

 KeyListener

 MouseListener

import java.awt.event.*;

Nested classes

 nested class: A class defined inside of another class

 Nested classes are hidden from other classes

 Nested objects can access/modify the fields of their outer object

 If necessary, can refer to outer object as OuterClassName.this

 Only the outer class can see the nested class or make objects of it

 Event listeners are often defined as nested classes inside a GUI

GUI event example

public class MyGUI {

 private JFrame frame;

 private JButton stutter;

 private JTextField textfield;

 public MyGUI() {

 ...

 stutter.addActionListener(new StutterListener());

 }

 ...

 // When button is clicked, doubles the field's text

 private class StutterListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 String text = textfield.getText();

 textfield.setText(text + text);

 }

 }

}

10/24/2011

4

Mouse and keyboard events

 Low-level events – close to the hardware – to listen

for and respond to mouse clicks/movements and

keyboard entry/echoing

MouseListener interface

public interface MouseListener {

 public void mouseClicked(MouseEvent event);

 public void mouseEntered(MouseEvent event);

 public void mouseExited(MouseEvent event);

 public void mousePressed(MouseEvent event);

 public void mouseReleased(MouseEvent event);

}

 Most AWT/Swing components have this method
public void addMouseListener(MouseListener ml)

Implementing listener

public class MyMouseListener implements
MouseListener {
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mousePressed(MouseEvent event) {
 System.out.println("You pressed the button!");
 }
 public void mouseReleased(MouseEvent event) {}
}

// elsewhere,

myComponent.addMouseListener(new MyMouseListener());

 Tedious to define the empty method for the events you are not interested in

Adapter pattern to the rescue

 Provide an adapter class that connects to GUI
components but exposes to us the interface we
prefer – only a method or two

 event adapter: A class with empty implementations
of all of a given listener interface's methods

 Ex: MouseAdapter, KeyAdapter,
FocusAdapter

 Ex: To extend MouseAdapter only override methods
you want to implement

 Don't have to type in empty methods for the ones you don't
want!

An abstract event adapter

// An empty implementation of all MouseListener methods
// (from java.awt.event)

public abstract class MouseAdapter implements MouseListener {
 public void mousePressed(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

 Classes can extend MouseAdapter rather than implementing
MouseListener

 client gets the complete mouse listener interface it wants

 implementer gets to write just the few mouse methods they want

public class MyMouseAdapter extends MouseAdapter {
 public void mousePressed(MouseEvent event) {
 System.out.println("You pressed the button!");
 }
}

// elsewhere…
myComponent.addMouseListener(new MyMouseAdapter());

Using MouseEvent

public class MyMouseAdapter extends MouseAdapter {

 public void mousePressed(MouseEvent event) {

 Object source = event.getSource();

 if (source == button && event.getX() < 10) {

 JOptionPane.showMessageDialog(null,

 "You clicked the left edge!");

 }

 }

}

10/24/2011

5

Mouse input listener

 The MouseInputListener interface and the MouseInputAdapter class

ease the development of an object that listens to mouse clicks, movement,

and/or wheel events

public class MyMouseInputAdapter extends
 MouseInputAdapter {
 public void mousePressed(MouseEvent event) {
 System.out.println("Mouse was pressed");
 }
 public void mouseDragged(MouseEvent event) {
 Point p = event.getPoint();
 System.out.println("Mouse is at " + p);
 }

}

…

MyMouseInputAdapter adapter = new
 MyMouseInputAdapter();
myPanel.addMouseListener(adapter);
myPanel.addMouseMotionListener(adapter);

Similar for keyboard events

public interface KeyListener {
 public void keyPressed(KeyEvent event);
 public void keyReleased(KeyEvent event);
 public void keyTyped(KeyEvent event);
}
…
// what key code was pressed? (one for almost every key)
public static int VK_A, VK_B, ..., VK_Z,
 VK_0, ... VK_9, VK_F1, ... VK_F10, VK_UP, VK_LEFT, ...,
// Were any modifier keys held down?
public static int CTRL_MASK, ALT_MASK, SHIFT_MASK
public char getKeyChar()
public int getKeyCode() // use VK_* with this
public Object getSource()
public int getModifiers() // use *_MASK with this

 Equivalent adapters, too

Focus: current target of keyboard input

 If a component doesn't have the focus, it will not receive
events

 By default, most components don't receive focus

 Buttons, text fields, and some others default to on

 JComponent methods for focus
 public void setFocusable(boolean b)

 Sets whether this component can receive keyboard focus

 public void requestFocus()

 Asks for this component to be given the current keyboard focus

 FocusListener (focus gained or lost), focusAdapter, also
available

Other events

UW CSE331 Autumn 2011

 Window events (closed, opened, iconified, ...)

 Change events (state changed in a JSlider, …)

 Component events (component hidden, resized,

shown, …)

 JList/JTree select events

 Document events (for text fields)

 …

Next steps

UW CSE331 Autumn 2011

 Assignment 3: due Sunday October 30, 11:59PM

 Lectures

 W (Midterm review, including example questions)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

