
10/24/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

GUI & (A LITTLE ON) DESIGN PATTERNS III

Autumn 2011

Why learn GUIs?

 Learn about event-driven programming techniques –
perhaps the most-used version of inversion-of-control

 Practice learning and using a large, complex API

 A chance to see how it is designed and learn from it
(design pattern usage, etc.)

 Caution: There is a ton of information for GUI
programming – huge APIs

 You won't memorize it all; you will look things up as you
need them

 But you have to learn the fundamental concepts and general
ideas

Don’t mistake…

UW CSE331 Autumn 2011

 … how to build a GUI well with …

 … what is a good UI for people

 Just another version of “building the system right vs.

building the right system”

 We’ll come back to some usability issues – much

more related to “building the right system” later in

the term

Java GUI History

 Abstract Windowing Toolkit (AWT): Sun's initial effort to
create a set of cross-platform GUI classes (JDK 1.0 - 1.1)

 Maps general Java code to each operating system's real GUI
system

 Limited to lowest common denominator; clunky to use

 Swing: A newer GUI library written from the ground up that
allows much more powerful graphics and GUI construction
(JDK 1.2+)

 Paints GUI controls itself pixel-by-pixel rather than handing off to
OS

 Better features, better compatibility, better design

 Warning: Both exist in Java now; easy to get them mixed
up; still have to use both in various places

GUI terminology

 window: A first-class citizen of the graphical desktop

 Also called a top-level container

 Ex: frame, dialog box, applet

 component: A GUI widget that resides in a window

 Also called controls in many other languages

 Ex: button, text box, label

 container: A logical grouping for storing components

 Ex: panel, box

Swing components (partial)

http://daniellemeitiv.com/2011/04/11/a-round-of-words-in-80-days-swinging-through-week-one/

10/24/2011

2

Swing inheritance hierarchy

 Component (AWT)

 Window

 Frame

 JFrame (Swing)

 JDialog

 Container

 JComponent (Swing)

 JButton JColorChooser JFileChooser

 JComboBox JLabel JList

 JMenuBar JOptionPane JPanel

 JPopupMenu JProgressBar JScrollbar

 JScrollPane JSlider JSpinner

 JSplitPane JTabbedPane JTable

 JToolbar JTree JTextArea

 JTextField ...

import java.awt.*;

import javax.swing.*;

Component properties

 Each has a get/is accessor and a set modifier

 Ex: getColor, setFont, setEnabled, isVisible

name type description

background Color background color behind component

border Border border line around component

enabled boolean whether it can be interacted with

focusable boolean whether key text can be typed on it

font Font font used for text in component

foreground Color foreground color of component

height, width int component's current size in pixels

visible boolean whether component can be seen

tooltip text String text shown when hovering mouse

size, minimum / maximum /
preferred size

Dimension various sizes, size limits, or desired sizes
that the component may take

JFrame

A window holding components

 Constructors with an optional title
public JFrame()
public JFrame(String title)

 Make a frame f appear on the screen
f.setVisible(true) public void

 Place the given component or container inside the frame f
f.add(Component comp)

 Make the frame perform a given action when it closes
public void setDefaultCloseOperation(int op)

 Common value passed: JFrame.EXIT_ON_CLOSE

 If not set, the program will never exit even if the frame is closed

 Give the frame a fixed size in pixels
public void setSize(int width, int height)

 Resize the frame to fit the components tightly
public void pack()

GUI example

import java.awt.*;

import javax.swing.*;

public class GuiExample1 {

 public static void main(String[] args) {

 JFrame frame = new JFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(new Dimension(300, 100));

 frame.setTitle("A frame");

 JButton button1 = new JButton();

 button1.setText("I'm a button.");

 button1.setBackground(Color.BLUE);

 frame.add(button1);

 JButton button2 = new JButton();

 button2.setText("Click me!");

 button2.setBackground(Color.RED);

 frame.add(button2);

 frame.setVisible(true);

 }

}

We defined two buttons, but only one is

visible. Why?

What happens when we click button2?

It’s tedious… and there is more …

UW CSE331 Autumn 2011

 Size and positioning

 Preferred/minimum sizes, absolute/relative positioning

 …

 Containers and layout

 Flow layout – laying out components in a container

 Border layout – NORTH, SOUTH, EAST, WEST, CENTER

 Grid layout

 …

 And more, lots more…

 …

GUI control structure
inversion-of-control

 event: An object representing a user's interaction with a GUI

component

 listener: An object responding to events

 To handle an event, attach a listener to a component (such as a

button)

 The listener will be notified when the event occurs (such as a

button click)

10/24/2011

3

Event-driven programming

 A programming style where the overall flow of execution is
dictated by events

 The program defines a set of listeners that wait for specific
events

 As each event happens due to a user action, the program runs
specific code

 The overall flow of execution is determined by the series of
events that occur, not a pre-determined order

 The events invoke client code (through the listeners) without
knowing which client code is invoked

 The invokes relation (in part) no longer
matches the names relation

Action events

 action event: An action on a GUI component

 The most common, general event type in Swing,

caused by

 button or menu clicks,

 check box checking / unchecking,

 pressing Enter in a text field, ...

 Represented by a class named ActionEvent

 Handled by objects that implement interface
ActionListener

Implementing a listener

public class name implements ActionListener {

 public void actionPerformed(ActionEventevent) {

 code to handle the event;

 }

}

public void addActionListener(ActionListener al)

 Attaches the given listener to be notified of clicks and

events that occur on this component

 JButton and other graphical components have this

method

Event hierarchy

 EventObject

 AWTEvent (AWT)

 ActionEvent

 TextEvent

 ComponentEvent

 FocusEvent

 WindowEvent

 InputEvent

 KeyEvent

 MouseEvent

 EventListener

 AWTEventListener

 ActionListener

 TextListener

 ComponentListener

 FocusListener

 WindowListener

 KeyListener

 MouseListener

import java.awt.event.*;

Nested classes

 nested class: A class defined inside of another class

 Nested classes are hidden from other classes

 Nested objects can access/modify the fields of their outer object

 If necessary, can refer to outer object as OuterClassName.this

 Only the outer class can see the nested class or make objects of it

 Event listeners are often defined as nested classes inside a GUI

GUI event example

public class MyGUI {

 private JFrame frame;

 private JButton stutter;

 private JTextField textfield;

 public MyGUI() {

 ...

 stutter.addActionListener(new StutterListener());

 }

 ...

 // When button is clicked, doubles the field's text

 private class StutterListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 String text = textfield.getText();

 textfield.setText(text + text);

 }

 }

}

10/24/2011

4

Mouse and keyboard events

 Low-level events – close to the hardware – to listen

for and respond to mouse clicks/movements and

keyboard entry/echoing

MouseListener interface

public interface MouseListener {

 public void mouseClicked(MouseEvent event);

 public void mouseEntered(MouseEvent event);

 public void mouseExited(MouseEvent event);

 public void mousePressed(MouseEvent event);

 public void mouseReleased(MouseEvent event);

}

 Most AWT/Swing components have this method
public void addMouseListener(MouseListener ml)

Implementing listener

public class MyMouseListener implements
MouseListener {
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mousePressed(MouseEvent event) {
 System.out.println("You pressed the button!");
 }
 public void mouseReleased(MouseEvent event) {}
}

// elsewhere,

myComponent.addMouseListener(new MyMouseListener());

 Tedious to define the empty method for the events you are not interested in

Adapter pattern to the rescue

 Provide an adapter class that connects to GUI
components but exposes to us the interface we
prefer – only a method or two

 event adapter: A class with empty implementations
of all of a given listener interface's methods

 Ex: MouseAdapter, KeyAdapter,
FocusAdapter

 Ex: To extend MouseAdapter only override methods
you want to implement

 Don't have to type in empty methods for the ones you don't
want!

An abstract event adapter

// An empty implementation of all MouseListener methods
// (from java.awt.event)

public abstract class MouseAdapter implements MouseListener {
 public void mousePressed(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

 Classes can extend MouseAdapter rather than implementing
MouseListener

 client gets the complete mouse listener interface it wants

 implementer gets to write just the few mouse methods they want

public class MyMouseAdapter extends MouseAdapter {
 public void mousePressed(MouseEvent event) {
 System.out.println("You pressed the button!");
 }
}

// elsewhere…
myComponent.addMouseListener(new MyMouseAdapter());

Using MouseEvent

public class MyMouseAdapter extends MouseAdapter {

 public void mousePressed(MouseEvent event) {

 Object source = event.getSource();

 if (source == button && event.getX() < 10) {

 JOptionPane.showMessageDialog(null,

 "You clicked the left edge!");

 }

 }

}

10/24/2011

5

Mouse input listener

 The MouseInputListener interface and the MouseInputAdapter class

ease the development of an object that listens to mouse clicks, movement,

and/or wheel events

public class MyMouseInputAdapter extends
 MouseInputAdapter {
 public void mousePressed(MouseEvent event) {
 System.out.println("Mouse was pressed");
 }
 public void mouseDragged(MouseEvent event) {
 Point p = event.getPoint();
 System.out.println("Mouse is at " + p);
 }

}

…

MyMouseInputAdapter adapter = new
 MyMouseInputAdapter();
myPanel.addMouseListener(adapter);
myPanel.addMouseMotionListener(adapter);

Similar for keyboard events

public interface KeyListener {
 public void keyPressed(KeyEvent event);
 public void keyReleased(KeyEvent event);
 public void keyTyped(KeyEvent event);
}
…
// what key code was pressed? (one for almost every key)
public static int VK_A, VK_B, ..., VK_Z,
 VK_0, ... VK_9, VK_F1, ... VK_F10, VK_UP, VK_LEFT, ...,
// Were any modifier keys held down?
public static int CTRL_MASK, ALT_MASK, SHIFT_MASK
public char getKeyChar()
public int getKeyCode() // use VK_* with this
public Object getSource()
public int getModifiers() // use *_MASK with this

 Equivalent adapters, too

Focus: current target of keyboard input

 If a component doesn't have the focus, it will not receive
events

 By default, most components don't receive focus

 Buttons, text fields, and some others default to on

 JComponent methods for focus
 public void setFocusable(boolean b)

 Sets whether this component can receive keyboard focus

 public void requestFocus()

 Asks for this component to be given the current keyboard focus

 FocusListener (focus gained or lost), focusAdapter, also
available

Other events

UW CSE331 Autumn 2011

 Window events (closed, opened, iconified, ...)

 Change events (state changed in a JSlider, …)

 Component events (component hidden, resized,

shown, …)

 JList/JTree select events

 Document events (for text fields)

 …

Next steps

UW CSE331 Autumn 2011

 Assignment 3: due Sunday October 30, 11:59PM

 Lectures

 W (Midterm review, including example questions)

 Upcoming: Friday 10/28, in class midterm – open book, open

note, closed neighbor, closed electronic devices

UW CSE331 Autumn 2011

