
10/26/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

MIDTERM REVIEW

Autumn 2011

The other kind of testing…

CSE 331 Autumn 2011

2

 Actually, it’s the same as software testing (mostly)

 By picking effective subdomains, I hope to

determine how likely it is that you understand the

material – it’s inherently sampling, not proof

 In this situation, a single test suite will be executed

across 56 different processors

The form of the test:
Subject to some (but limited) change

CSE 331 Autumn 2011

3

 Part I: True/false with a brief justification

 5-10 questions

 Two examples from last year

 “hashCode can be determined at most once – that is, only

when it is first actually requested by a client and then it

can be cached.”

 “If an immutable object throws an exception, it is never

left in an undesirable or indeterminate state.”

 In small groups, spend two

minutes discussing these

Part II: Testing

CSE 331 Autumn 2011

4

 More than on last year’s exam – now about 20% of the
total points

 Don’t worry about white-box testing, as we haven’t yet
covered it

 Likely kinds of questions

 In what ways is/is not unit testing like <some other kind of
testing like system testing or acceptance testing or …>? You
will not need a deep understanding of these other kinds of
testing

 Write some black-box tests for a given specification and
describe what subdomains they are intended to address

Part III: Specifications

CSE 331 Autumn 2011

5

 (Not entirely distinct from the next Part on ADTs)

 Likely kinds of questions

 Infer a likely specification (requires/modifies/etc.) from

a piece of code

 Given a specification, provide an implementation that is

almost surely not what the specification intended

 ??

Part IV: ADTs
6

 Likely kinds of concepts to be tested

 Is one ADT specification a true subtype of another ADT specification?

Some variant of the following question from last year

In small

groups,

spend two

minutes

discussing

this

example

question

10/26/2011

2

Part IV: ADTs continued
7

 Likely kinds of concepts to be tested

 What is, or is wrong with, a representation invariant for a given class?

 Is there representation exposure? How might you fix it?

 Relationship of representation invariants and abstraction functions

In small

groups,

spend two

minutes

discussing

this

example

question

Part V: Miscellaneous

CSE 331 Autumn 2011

8

 This part might not be included

 And if included, I’m not yet sure what it will be

Per lecture: points to focus upon
But others are fair game still

CSE 331 Autumn 2011

9

 Lecture 1 – introduction

 Programs (implementation) satisfying specifications

 It’s tricky business

 It’s a many-to-many mapping

 No notion of a “correct” specification

 Some can surely admit implementations that are highly

unlikely to be desired

Lecture 2 – specifications

CSE 331 Autumn 2011

10

 The value of specifications in addressing complexity

in software

 The dual roles of client and implementer

 What does the client depend upon?

 What does the implementer need to provide?

 Why is a specification useful for this?

 Why not just read code? Just use documentation?

Just use Java interfaces? Etc.?

 Javadoc and the 331 extensions to it

Lecture 3 – testing

CSE 331 Autumn 2011

11

 Testing is one form of quality assurance for software

 Testing terminology – pass, fail, test case, test suite,

…

 General notion of kinds of testing

 Subdomains

 JUnit’s role – what can it help you do and not do?

Lecture 4 – equality

CSE 331 Autumn 2011

12

 Different notions of equality

 Key underlying properties of (any useful) equality

 Relationship of equals and hashCode

 Overriding vs. overloading

10/26/2011

3

Lectures 5 and 6 – ADTs

CSE 331 Autumn 2011

13

 Motivations for the use of ADTs

 Primary focus on ADT operations rather than representations

 Different kinds of ADT operations (observers, mutators, etc.) and
differences between mutable and immutable ADTs

 Hide the implementation decisions to allow change

 Abstraction function – what is it, why is it important, how is it
used?

 Representation invariant – what is it, why is it important, how
is it used?

 The relationship between the AF and RI, the ADT and its
implementation (that diagram)

 Representation exposure – what is it, how to eliminate it?

Lecture 7 – subtyping & subclassing

CSE 331 Autumn 2011

14

 A way to share behaviors and/or code

 Weaker and stronger specifications – and the
relationship to satisfying implementations

 True subtyping vs. Java subtyping – allowing
substitutability

 Subtyping is over specifications; subclassing is over
implementations – both use similar mechanisms in
Java

 Mutability can be useful, but can confuse the issue
of true subtyping

Lecture 8 – modular design principles

CSE 331 Autumn 2011

15

 Cohesion (why together?) and coupling (how do

modules interact?)

 Different kinds of dependences – invokes, names,

extends, etc.

 Ways to manage dependences – e.g., Law of

Demeter

 Module dependence diagrams (largely to identify

coupling)

Lecture 9 – design style

CSE 331 Autumn 2011

16

 Long list of good things to do in coding

 Method, field, constructor design

 Naming

 Class design ideals (cohesion, coupling, clarity, etc.)

 Documentation

 Invariants

 static vs. non-static; public vs. private; etc.

 Selecting types

 Independence of views

Lectures 10-12

CSE 331 Autumn 2011

17

 Design patterns, basic GUI

 Not a focus of this test – will be fair game on the

final

