
10/31/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

TESTING II

Autumn 2011

A4

UW CSE331 Autumn 2011

 Will be available later today

 Is a totally new assignment – by no means carefully
vetted

 It’s focused (again) on testing and binary search

 This may be boring for some of you

 I hope that the expected learning is important enough
to justify this

 One of the next assignments (likely only one more,
possibly two) will be a music player that accepts a
textual notation for music and produces MIDI output

2

Midterms – Parts I and II graded

UW CSE331 Autumn 2011

 Plan (hope?) to have them ready by Wednesday

 Key with comments is under production – released

when the results are released

3

A4 basics

 Random test generation question
from midterm

 The randomly generated array
length might not be consistent
with the number of values in the
array

 The randomly generated array
might not be sorted

 Random keys are much more
likely to be not found than to be
found

 There's no way to determine the
oracle

 You’ll write a test generation
program that overcomes these
issues (and produces JUnit tests)

 Generate length and then values
for the test array

 Produce the randomized in a
way that guarantees it is sorted
– use a binary search tree (BST)
to first insert the random
elements and then retrieve them
in sorted order

 Randomly decide to generate
(for instance) 10% found keys –
and then find a key in the array
or find a key not in the array

 Voilà, an oracle appears (almost
that easily)

UW CSE331 Autumn 2011

4

A4 objectives include

UW CSE331 Autumn 2011

 Deeper understanding of testing

 Representation invariant needed for BST

 Some focus on abstraction function

 Related to visitor pattern for traversing BST to create sorted
array

 Clean mind

 Separate tests you generate from tests you need to test
your program

 Separate binary search (program under test) from binary
search tree (implementation mechanism for your program)

 …

5

White (glass, clear)-box testing

 Goals

 Ensure test suite covers (executes) all of the program

 Measure quality of test suite with % coverage

 Assumption

 High coverage  few mistakes in the program

 “If statement S hasn’t been executed (covered) by any test, it might
cause an error”

 Focus on coverage, not oracles

 Fundamentally an inadequacy property of test suites

 Focus: features not described by specification

 Control-flow details

 Performance optimizations

 Alternate algorithms for different cases

UW CSE331 Autumn 2011

6

10/31/2011

2

White-box Motivation

 There are some subdomains that black-box testing won't find
 boolean[] primeTable = new boolean[CACHE_SIZE];
 boolean isPrime(int x) {

 if (x>CACHE_SIZE) {

 for (int i=2; i<x/2; i++) {

 if (x%i==0) return false;

 }

 return true;

 }

 else {

 return primeTable[x];

 }

 }

 Important transition around x = CACHE_SIZE that isn’t visible

to black-box testing (assuming CACHE_SIZE is private)

UW CSE331 Autumn 2011

7

White Box Testing: Advantages

 Finds an important class of boundaries – yields

useful test cases

 Need to check numbers on each side of CACHE_SIZE

 CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1

 If CACHE_SIZE is mutable, we may need to test with

different CACHE_SIZEs

 Disadvantages?

 Tests may have same bugs as implementation

UW CSE331 Autumn 2011

8

Statement coverage

 Test suite
{ min(2,3)}

 Good: executes
every instruction

 Bad: doesn’t find
bug

 So, can be
unsatisfying in
trivial cases

static int min (int a, int b) {

 int m = a;

 if (a <= b) {

 m = a;

 }

 return m;

}

UW CSE331 Autumn 2011

9

Think of the program as a flow-chart

UW CSE331 Autumn 2011

10

static int min (int a, int b) {

 int m = a;

 if (a <= b) {

 m = a;

 }

 return m;

}

m = a

a <= b?

m = a

true

return m

false

What is missed by { min(2,3)}?

Edge coverage

 Covering all

statements would not

require edge ac to be

covered

 Edge coverage

requires all control

flow graph edges to

be coverage by at

least one test

a

b

c

d

e

f
UW CSE331 Autumn 2011

Edge coverage

UW CSE331 Autumn 2011

12

m = a

a <= b?

m = a

true

return m

false

{ min(2,3), min(3,2)}

• Doesn’t increase statement coverage –

still 100%

• But does increase edge coverage from

75% to 100%

10/31/2011

3

Is edge coverage enough?

 Consider this program

and test suite (not

exactly Java, but you

can follow it)

 Make it into a flow-

chart… mark

executed edges

UW CSE331 Autumn 2011

13

if x != 0

y = 5;

else

 z = z - x;

if z > 1

 z = z / x;

else

 z = 0;

{(x = 0, z = 1)

 (x = 1, z = 3)}

Edge coverage: 100%

UW CSE331 Autumn 2011

14

if x != 0

 y = 5;

else

 z = z - x;

if z > 1

 z = z / x;

else

 z = 0;

x != 0?

y = 5

true false

z = z-x

z > 1?

z = z/x

true false

z = 0

{(x = 0, z = 1)

 (x = 1, z = 3)}

{(x = 0, z = 1)

 (x = 1, z = 3)}

What is missed?

15

Path coverage

 Edge coverage is in some sense very static

 Edges can be covered without covering actual paths

(sequences of edges) that the program may execute

 Not all paths in a program are always executable

 Loops complicate paths

UW CSE331 Autumn 2011

Varieties of coverage

UW CSE331 Autumn 2011

16

 Covering all of the program

 Statement coverage

 Edge (branch) coverage

 Decision coverage (not discussed)

 Handling compound decisions

 Loop coverage (not discussed)

 Condition/Decision coverage (not discussed)

 Path coverage

 Limitations of coverage

 100% coverage is not always a reasonable target

 High cost to approach the limit

 Coverage is just a heuristic: we really want the revealing subdomains

increasing

number of

test cases

(more or

less)

Structural coverage: some challenges

UW CSE331 Autumn 2011

17

 Interprocedural coverage

 Late binding in OO – coverage of polymorphism

 Need good tools for tracking coverage

 Higher coverage may be deceptive

 There are a family of new, automatic test

generation techniques that seem to be influencing

coverage-based testing

Next steps

UW CSE331 Autumn 2011

 Assignment 4: out later today, due Wednesday

November 9, 2011 at 11:59PM

 Lectures: TBA

18

10/31/2011

4

