
10/31/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

TESTING II

Autumn 2011

A4

UW CSE331 Autumn 2011

 Will be available later today

 Is a totally new assignment – by no means carefully
vetted

 It’s focused (again) on testing and binary search

 This may be boring for some of you

 I hope that the expected learning is important enough
to justify this

 One of the next assignments (likely only one more,
possibly two) will be a music player that accepts a
textual notation for music and produces MIDI output

2

Midterms – Parts I and II graded

UW CSE331 Autumn 2011

 Plan (hope?) to have them ready by Wednesday

 Key with comments is under production – released

when the results are released

3

A4 basics

 Random test generation question
from midterm

 The randomly generated array
length might not be consistent
with the number of values in the
array

 The randomly generated array
might not be sorted

 Random keys are much more
likely to be not found than to be
found

 There's no way to determine the
oracle

 You’ll write a test generation
program that overcomes these
issues (and produces JUnit tests)

 Generate length and then values
for the test array

 Produce the randomized in a
way that guarantees it is sorted
– use a binary search tree (BST)
to first insert the random
elements and then retrieve them
in sorted order

 Randomly decide to generate
(for instance) 10% found keys –
and then find a key in the array
or find a key not in the array

 Voilà, an oracle appears (almost
that easily)

UW CSE331 Autumn 2011

4

A4 objectives include

UW CSE331 Autumn 2011

 Deeper understanding of testing

 Representation invariant needed for BST

 Some focus on abstraction function

 Related to visitor pattern for traversing BST to create sorted
array

 Clean mind

 Separate tests you generate from tests you need to test
your program

 Separate binary search (program under test) from binary
search tree (implementation mechanism for your program)

 …

5

White (glass, clear)-box testing

 Goals

 Ensure test suite covers (executes) all of the program

 Measure quality of test suite with % coverage

 Assumption

 High coverage few mistakes in the program

 “If statement S hasn’t been executed (covered) by any test, it might
cause an error”

 Focus on coverage, not oracles

 Fundamentally an inadequacy property of test suites

 Focus: features not described by specification

 Control-flow details

 Performance optimizations

 Alternate algorithms for different cases

UW CSE331 Autumn 2011

6

10/31/2011

2

White-box Motivation

 There are some subdomains that black-box testing won't find
 boolean[] primeTable = new boolean[CACHE_SIZE];
 boolean isPrime(int x) {

 if (x>CACHE_SIZE) {

 for (int i=2; i<x/2; i++) {

 if (x%i==0) return false;

 }

 return true;

 }

 else {

 return primeTable[x];

 }

 }

 Important transition around x = CACHE_SIZE that isn’t visible

to black-box testing (assuming CACHE_SIZE is private)

UW CSE331 Autumn 2011

7

White Box Testing: Advantages

 Finds an important class of boundaries – yields

useful test cases

 Need to check numbers on each side of CACHE_SIZE

 CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1

 If CACHE_SIZE is mutable, we may need to test with

different CACHE_SIZEs

 Disadvantages?

 Tests may have same bugs as implementation

UW CSE331 Autumn 2011

8

Statement coverage

 Test suite
{ min(2,3)}

 Good: executes
every instruction

 Bad: doesn’t find
bug

 So, can be
unsatisfying in
trivial cases

static int min (int a, int b) {

 int m = a;

 if (a <= b) {

 m = a;

 }

 return m;

}

UW CSE331 Autumn 2011

9

Think of the program as a flow-chart

UW CSE331 Autumn 2011

10

static int min (int a, int b) {

 int m = a;

 if (a <= b) {

 m = a;

 }

 return m;

}

m = a

a <= b?

m = a

true

return m

false

What is missed by { min(2,3)}?

Edge coverage

 Covering all

statements would not

require edge ac to be

covered

 Edge coverage

requires all control

flow graph edges to

be coverage by at

least one test

a

b

c

d

e

f
UW CSE331 Autumn 2011

Edge coverage

UW CSE331 Autumn 2011

12

m = a

a <= b?

m = a

true

return m

false

{ min(2,3), min(3,2)}

• Doesn’t increase statement coverage –

still 100%

• But does increase edge coverage from

75% to 100%

10/31/2011

3

Is edge coverage enough?

 Consider this program

and test suite (not

exactly Java, but you

can follow it)

 Make it into a flow-

chart… mark

executed edges

UW CSE331 Autumn 2011

13

if x != 0

y = 5;

else

 z = z - x;

if z > 1

 z = z / x;

else

 z = 0;

{(x = 0, z = 1)

 (x = 1, z = 3)}

Edge coverage: 100%

UW CSE331 Autumn 2011

14

if x != 0

 y = 5;

else

 z = z - x;

if z > 1

 z = z / x;

else

 z = 0;

x != 0?

y = 5

true false

z = z-x

z > 1?

z = z/x

true false

z = 0

{(x = 0, z = 1)

 (x = 1, z = 3)}

{(x = 0, z = 1)

 (x = 1, z = 3)}

What is missed?

15

Path coverage

 Edge coverage is in some sense very static

 Edges can be covered without covering actual paths

(sequences of edges) that the program may execute

 Not all paths in a program are always executable

 Loops complicate paths

UW CSE331 Autumn 2011

Varieties of coverage

UW CSE331 Autumn 2011

16

 Covering all of the program

 Statement coverage

 Edge (branch) coverage

 Decision coverage (not discussed)

 Handling compound decisions

 Loop coverage (not discussed)

 Condition/Decision coverage (not discussed)

 Path coverage

 Limitations of coverage

 100% coverage is not always a reasonable target

 High cost to approach the limit

 Coverage is just a heuristic: we really want the revealing subdomains

increasing

number of

test cases

(more or

less)

Structural coverage: some challenges

UW CSE331 Autumn 2011

17

 Interprocedural coverage

 Late binding in OO – coverage of polymorphism

 Need good tools for tracking coverage

 Higher coverage may be deceptive

 There are a family of new, automatic test

generation techniques that seem to be influencing

coverage-based testing

Next steps

UW CSE331 Autumn 2011

 Assignment 4: out later today, due Wednesday

November 9, 2011 at 11:59PM

 Lectures: TBA

18

10/31/2011

4

