10/31/2011

==
o Will be available later today
01 Is a totally new assignment — by no means carefully
vetted
0 If's focused (again) on testing and binary search
This may be boring for some of you
CSE 331 | hope that the expected learning is important enough
to justify this
SOFTWARE DESIGN & IMPLEMENTATION 0 One of the next assignments (likely only one more,
TESTING Il possibly two) will be a music player that accepts a
textual notation for music and produces MIDI output
UW CSE331 Autumn 2011
Midterms — Parts | and Il graded A4 basics
== ==
Random test ti ti Generate length and then val
0 Plan (hope?) to have them ready by Wednesday T brom midterm O e fest aray
. . . The randomly generated array 1 Produce the randomized in a
01 Key with comments is under production — released length might ot be consistent oy ot gummees'zﬂ s sonted
when the results are released Y she number of values in he — use a binary search tree (BST)
Y to first insert the random
The randomly generated array elements and then retrieve them
might not be sorted in sorted order
Randorm keys are much more)
lely 0 be'not found than o be ﬁﬂ??f.’smciﬁ%@ﬁf.ff&ei:ﬁ B
T:u" . d ine th and then find a key in the array
or::es no way fo defermine the or find a key not in the array
0 You'll write a test generation o \{‘mlq, qqlorqcle appears (almost
program that overcomes these that easily)
issues (and produces JUnit tests)
UW CSE331 Autumn 2011 UW CSE331 Autumn 2011
A4 objectives include White (glass, clear)-box testing
== | B

01 Deeper understanding of testing

o Representation invariant needed for BST

o1 Some focus on abstraction function
Related to visitor pattern for traversing BST to create sorted
array

o Clean mind
Separate tests you generate from tests you need to test
your program
Separate binary search (program under test) from binary
search tree (implementation mechanism for your program)

UW CSE331 Autumn 2011

o Goals
Ensure test suite covers (executes) all of the program
Measure quality of test suite with % coverage

0 Assumption
High coverage = few mistakes in the program

u “If statement S hasn't been executed (covered) by any test, it might
cause an error”

Focus on coverage, not oracles

Fundamentally an inadequacy property of test suites
11 Focus: features not described by specification

Control-flow details

Performance optimizations

Alternate algorithms for different cases

UW CSE331 Autumn 2011

10/31/2011

White-box Motivation

1 There are some subdomains that black-box testing won't find
boolean[] primeTable = new boolean[CACHE_ SIZE];
boolean isPrime (int x) {
if (x>CACHE SIZE) ({
for (int i=2; i<x/2; i++) {
if (x%i==0) return false;
}
return true;
}
else {
return primeTable[x];
}
}

0 Important transition around x = CACHE_SIZE that isn’t visible

to black-box testing (assuming CACHE_SIZE is private)
UW CSE331 Autumn 2011

White Box Testing: Advantages
[

0 Finds an important class of boundaries — yields
useful test cases
Need to check numbers on each side of CACHE SIZE
= CACHE_SIZE-1, CACHE SIZE, CACHE_SIZ_E+1
If CACHE SIZE is mutable, we may need to test with
different CACHE_SIZEs
o Disadvantages?

Tests may have same bugs as implementation

UW CSE331 Autumn 2011

Statement coverage

static int min (int a, int b) {
int m = a;
if (a <=Db) {
m = a;
}

return m;

0 Test suite
{min(2,3)}

1 Good: executes
every instruction

01 Bad: doesn’t find
bug

0 So, can be
unsatisfying in
trivial cases

UW CSE331 Autumn 2011

Think of the program as a flow-chart
[

static int min (int a, int b) {

EESTEN

a
if (a <=b) {

What is missed by { min (2, 3) }2

UW CSE331 Autumn 2011

Edge coverage

o Covering all
statements would not
require edge ac to be m
covered =

0 Edge coverage
requires all control
flow graph edges to
be coverage by at A
least one test

UW CSE331 Autumn 2011

Edge coverage
[

{min(2,3), min(3,2)}
<> * Doesn't increase statement coverage —
still 100%

* But does increase edge coverage from
75% to 100%

UW CSE331 Autumn 2011

10/31/2011

Is edge coverage enough?

Consider this program |if x !'= 0
and test suite (not y=35
else
exactly Java, but you z =z - x;
can follow it) ifz>1
Make it into a flow- z =2z / x;
chart... mark else
executed edges z =0;

{(x=0, z=1)
! 1, z = 3)}

UW CSE331 Autumn 2011

Edge coverage: 100%

= 1)
3)}

I
(=}
N
I

{(x =

(x=1, z

UW CSE331 Autumn 2011

Path coverage

Edge coverage is in some sense very static

Edges can be covered without covering actual paths
(sequences of edges) that the program may execute

Not all paths in a program are always executable

Loops complicate paths

UW CSE331 Autumn 2011

Varieties of coverage

Covering all of the program

Statement coverage increasing
Edge (branch) coverage number of
Decision coverage (not discussed) test cases

Handling compound decisions
Loop coverage (not discussed) (more or
Condition/Decision coverage (not discussed) less)

Path coverage

Limitations of coverage
100% coverage is not always a reasonable target
High cost to approach the limit
Coverage is just a heuristic: we really want the revealing subdomains

UW CSE331 Autumn 2011

Structural coverage: some challenges

Interprocedural coverage
Late binding in OO — coverage of polymorphism
Need good tools for tracking coverage

Higher coverage may be deceptive

There are a family of new, automatic test
generation techniques that seem to be influencing
coverage-based testing

UW CSE331 Autumn 2011

Next steps

Assignment 4: out later today, due Wednesday
November 9, 2011 at 11:59PM

Lectures: TBA

UW CSE331 Autumn 2011

10/31/2011

