
11/2/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

EXCEPTIONS AND ASSERTIONS

Autumn 2011

Everybody plays the fool …

…there’s no exception to the rule

Failure: String.reverse(“sneppah tihs”)

 Galloping Gurdy

 Industrial: Chernobyl, Three Mile Island, Bhopal, Fukushima
Daiichi, …

 Aerospace: Challenger, Columbia, Soyuz I, Apollo I, Ariane 5

 Aviation: AF4590 (Concorde), AA587

 Construction: Hyatt Regency walkway (KC, 1981), the last
Husky Stadium remodel (1987)

 And many, many more

 Henry Petroski has written broadly on the role
of failure in engineering

Software errors are inevitable, too

 Not famous software failures, but how to think more about reducing
the chances of failure and the consequences of failure

 Reducing the chances of failure is usually considered software reliability

 Reducing the consequences of failure is usually considered software
safety

 “A car that doesn’t start is unreliable; a car that doesn’t stop is unsafe.:

 Software failure causes include

 Misuse of your code (e.g., precondition violation)

 Errors in your code (e.g., bugs, representation exposure, …re)

 Unpredicted/unpredictable external problems (e.g., out of memory,
missing file, memory corruption, …)

 How would you categorize these?

 Failure of a subcomponent

 No return value (e.g., list element not found, division by zero)

Avoiding errors

 A precondition prohibits misuse of your code

 Adding a precondition weakens the spec

 This ducks the problem

 Does not address errors in your own code

 Does not help others who are misusing your code

 Removing the precondition requires specifying the

behavior

 Strengthens the spec

 Example: specify that an exception is thrown

Defensive programming

 Check

 precondition

 postcondition

 representation invariant

 other properties that you know to be true

 Check statically via reasoning and possibly tools

 Check dynamically at run time via assertions
 assert index >= 0;

 assert size % 2 == 0 : “Bad size for ” + toString();

 Write the assertions as you write the code

When not to use assertions

 Don’t clutter the code
x = y + 1;

assert x == y + 1; // useless,distracting

 Don’t perform side effects
assert list.remove(x); // modifies behavior if
 // assertion checking disabled

// Better:

boolean found = list.remove(x);

assert found;

 Turn them off in rare circumstances (e.g., production code)

 Eclipse: set in compiler preferences

 Command line

 java –ea runs Java with assertions enabled

 java runs Java with assertions disabled (default)

 Most assertions should always be enabled

http://www.youtube.com/watch?v=JNQ0GkGN3yM
http://www.youtube.com/watch?v=IqK2r5bPFTM
http://www.youtube.com/watch?v=IqK2r5bPFTM
http://en.wikipedia.org/wiki/Henry_Petroski
http://www.historylink.org/db_images/wa_stadium.JPG

11/2/2011

2

When something goes wrong

 Something goes wrong: an assertion fails (or would have failed if it
were there)

 Fail early, fail friendly

 Goal 1: Give information about the problem

 To the programmer: a good error message is key!

 To the client code

 Goal 2: Prevent harm from occurring

 Abort: inform a human (and perform or make it easier for them to
perform cleanup actions, loging the error, etc.)

 Re-try: problem might be transient

 Skip a subcomputation: permit rest of program to continue

 Fix the problem during execution (usually infeasible)

 External problem: no hope; just be informative

 Internal problem: if you can fix, you can prevent

Square root without exceptions

// requires: x 0

// returns: approximation to square root of x

public double sqrt(double x) {

 ...

}

Square root with assertion

// requires: x 0

// returns: approximation to square root of x

public double sqrt(double x) {

 double result;

 ... // compute result

 assert (Math.abs(result*result – x) < .0001);

 return result;

}

Square root, specified for all inputs

// throws: IllegalArgumentException if x < 0

// returns: approximation to square root of x

public double sqrt(double x) throws IllegalArgumentException

{

 if (x < 0)

 throw new IllegalArgumentException();

 ...

}

// Client code

try {

 y = sqrt(-1);

} catch (IllegalArgumentException e) {

 e.printStackTrace(); // or take some other action

}

Exception caught by catch associated with nearest

dynamically enclosing try

• Top-level default handler: stack trace, program

terminates

• Note: this is really a form of inversion-of-control

Throwing and catching

 At any time, your program has an active call
stack of methods

 The call stack is not the same as nesting of
classes or packages or such – it reflects which
methods called which methods during this
specific execution

 When an exception is thrown, the JVM looks
up the call stack until it finds a method with
a matching catch block for it

 If one is found, control jumps back to that
method

 If none is found, the program crashes

 Exceptions allow non-local error handling

 A method many levels up the stack can handle
a deep error

Propagating an exception

// returns: x such that ax^2 + bx + c = 0

// throws: IllegalArgumentException if no real soln exists

double solveQuad(double a, double b, double c)

 throws IllegalArgumentException

{

 // No need to catch exception thrown by sqrt

 return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

• How can clients know whether a set of arguments to solveQuad is illegal?

11/2/2011

3

Exception translation

// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)
 throws NotRealException
{
 try {
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
 } catch (IllegalArgumentException e) {
 throw new NotRealException();
 }
}

class NotRealException extends Exception {

 NotRealException() { super(); }

 NotRealException(String message) { super(message); }

 NotRealException(Throwable cause) { super(cause); }

 NotRealException(String msg, Throwable c) {

 super(msg, c); }

}

Exception

chaining

Special values

 Special values are often used to inform a client of a
problem
 null Map.get

 -1 indexOf

 NaN sqrt of negative number

 Problems with using special value
 Hard to distinguish from real results

 Error-prone
 The programmer may forget to check the result?

 The value should not be legal – should cause a failure later

 Ugly

 Often inefficient

Can use exceptions instead

 Special results through exceptions

 Expected

 Unpredictable or unpreventable by client

 Take special action and continue computing

 Should always check for this condition

 Should handle locally

Exceptions for failure

 Different from use for special values

 Failures are

 Unexpected

 Should be rare with well-written client and library

 Can be the client’s fault or the library’s

 Usually unrecoverable

 Usually can’t recover

 If the condition is not checked, the exception
propagates up the stack

 The top-level handler prints the stack trace

The finally block

try {

 code…

} catch (type name) {

 code… to handle the exception

} finally {

 code… to run after the try or catch finishes

}

 finally is often used for common “clean-up” code
try {

 // ... read from out; might throw

} catch (IOException e) {

 System.out.println("Caught IOException: “

 + e.getMessage());

} finally {

 out.close();

}

Why catch exceptions locally?

 Failure to catch exceptions violates modularity

 Call chain: AIntegerSet.insertIntegerList.insert

 IntegerList.insert throws an exception

 Implementer of IntegerSet.insert knows how list is being used

 Implementer of A may not even know that IntegerList exists

 Procedure on the stack may think that it is handling an
exception raised by a different call

 Better alternative: catch it and throw it again

 “chaining” or “translation” – show earlier

 Do this even if the exception is better handled up a level

 Makes it clear to reader of code that it was not an omission

11/2/2011

4

Java throwable hierarchy

 Checked exceptions for special cases

 Library: must declare in signature

 Client: must either catch or declare

 Even if you can prove it will never happen at run time

 There is guaranteed to be a dynamically enclosing catch

 Unchecked exceptions for failures

 Library: no need to declare

 Client: no need to catch

 RuntimeException and Error

 and their subclasses

Throwable

Runtime-

Exception

Error Exception

checked

exceptions

…

exception hierarchy

UW CSE331 Autumn 2011

20

Catching with inheritance

try {

 code…

} catch (FileNotFoundException fnfe) {

 code… to handle the file not found exception

} catch (IOException ioe) {

 code… to handle any other I/O exception

} catch (Exception e) {

 code to handle any other exception

}

 a SocketException would match the second block

 an ArithmeticException would match the third

block

Avoid proliferation of checked

exceptions

 Unchecked exceptions are better if clients will usually write
code that ensures the exception will not happen

 There is a convenient and inexpensive way to avoid it

 The exception reflects unanticipatable failures

 Otherwise use a checked exception

 Must be caught and handled – prevents program defects

 Checked exceptions should be locally caught and handled

 Checked exceptions that propagate long distances suggests bad
design (failure of modularity)

 Java sometimes uses null (or NaN, etc.) as a special value

 Acceptable if used judiciously, carefully specified

 But too easy to forget to check

Ignoring exceptions

 Effective Java Tip #65: Don't ignore exceptions

 An empty catch block is (a common) poor style –

often done to get code to compile or hide an error
try {

 readFile(filename);

} catch (IOException e) {} // do nothing on error

 At a minimum, print out the exception so you know it

happened
} catch (IOException e) {

 e.printStackTrace(); // just in case

}

Exceptions in review I

 Use an exception when

 Used in a broad or unpredictable context

 Checking the condition is feasible

 Use a precondition when

 Checking would be prohibitive (e.g., requiring that a list be
sorted)

 Used in a narrow context in which calls can be checked

 Avoid preconditions because

 Caller may violate precondition

 Program can fail in an uninformative or dangerous way

 Want program to fail as early as possible

 How do preconditions and exceptions differ, for the client?

11/2/2011

5

Exceptions in review II

 Use checked exceptions most of the time

 Handle exceptions earlier rather than later

 Not all exceptions are errors

 A program structuring mechanism with non-local jumps

 Used for exceptional (unpredictable) circumstances

Next steps

UW CSE331 Autumn 2011

 Assignment 4: out, due Wednesday November 9,

2011 at 11:59PM

 Lectures: F, Polymorphism/generics; M, Debugging

26

