
11/2/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

EXCEPTIONS AND ASSERTIONS

Autumn 2011

Everybody plays the fool …

…there’s no exception to the rule

Failure: String.reverse(“sneppah tihs”)

 Galloping Gurdy

 Industrial: Chernobyl, Three Mile Island, Bhopal, Fukushima
Daiichi, …

 Aerospace: Challenger, Columbia, Soyuz I, Apollo I, Ariane 5

 Aviation: AF4590 (Concorde), AA587

 Construction: Hyatt Regency walkway (KC, 1981), the last
Husky Stadium remodel (1987)

 And many, many more

 Henry Petroski  has written broadly on the role
of failure in engineering

Software errors are inevitable, too

 Not famous software failures, but how to think more about reducing
the chances of failure and the consequences of failure

 Reducing the chances of failure is usually considered software reliability

 Reducing the consequences of failure is usually considered software
safety

 “A car that doesn’t start is unreliable; a car that doesn’t stop is unsafe.:

 Software failure causes include

 Misuse of your code (e.g., precondition violation)

 Errors in your code (e.g., bugs, representation exposure, …re)

 Unpredicted/unpredictable external problems (e.g., out of memory,
missing file, memory corruption, …)

 How would you categorize these?

 Failure of a subcomponent

 No return value (e.g., list element not found, division by zero)

Avoiding errors

 A precondition prohibits misuse of your code

 Adding a precondition weakens the spec

 This ducks the problem

 Does not address errors in your own code

 Does not help others who are misusing your code

 Removing the precondition requires specifying the

behavior

 Strengthens the spec

 Example: specify that an exception is thrown

Defensive programming

 Check

 precondition

 postcondition

 representation invariant

 other properties that you know to be true

 Check statically via reasoning and possibly tools

 Check dynamically at run time via assertions
 assert index >= 0;

 assert size % 2 == 0 : “Bad size for ” + toString();

 Write the assertions as you write the code

When not to use assertions

 Don’t clutter the code
x = y + 1;

assert x == y + 1; // useless,distracting

 Don’t perform side effects
assert list.remove(x); // modifies behavior if
 // assertion checking disabled

// Better:

boolean found = list.remove(x);

assert found;

 Turn them off in rare circumstances (e.g., production code)

 Eclipse: set in compiler preferences

 Command line

 java –ea runs Java with assertions enabled

 java runs Java with assertions disabled (default)

 Most assertions should always be enabled

http://www.youtube.com/watch?v=JNQ0GkGN3yM
http://www.youtube.com/watch?v=IqK2r5bPFTM
http://www.youtube.com/watch?v=IqK2r5bPFTM
http://en.wikipedia.org/wiki/Henry_Petroski
http://www.historylink.org/db_images/wa_stadium.JPG

11/2/2011

2

When something goes wrong

 Something goes wrong: an assertion fails (or would have failed if it
were there)

 Fail early, fail friendly

 Goal 1: Give information about the problem

 To the programmer: a good error message is key!

 To the client code

 Goal 2: Prevent harm from occurring

 Abort: inform a human (and perform or make it easier for them to
perform cleanup actions, loging the error, etc.)

 Re-try: problem might be transient

 Skip a subcomputation: permit rest of program to continue

 Fix the problem during execution (usually infeasible)

 External problem: no hope; just be informative

 Internal problem: if you can fix, you can prevent

Square root without exceptions

// requires: x  0

// returns: approximation to square root of x

public double sqrt(double x) {

 ...

}

Square root with assertion

// requires: x  0

// returns: approximation to square root of x

public double sqrt(double x) {

 double result;

 ... // compute result

 assert (Math.abs(result*result – x) < .0001);

 return result;

}

Square root, specified for all inputs

// throws: IllegalArgumentException if x < 0

// returns: approximation to square root of x

public double sqrt(double x) throws IllegalArgumentException

{

 if (x < 0)

 throw new IllegalArgumentException();

 ...

}

// Client code

try {

 y = sqrt(-1);

} catch (IllegalArgumentException e) {

 e.printStackTrace(); // or take some other action

}

Exception caught by catch associated with nearest

dynamically enclosing try

• Top-level default handler: stack trace, program

terminates

• Note: this is really a form of inversion-of-control

Throwing and catching

 At any time, your program has an active call
stack of methods

 The call stack is not the same as nesting of
classes or packages or such – it reflects which
methods called which methods during this
specific execution

 When an exception is thrown, the JVM looks
up the call stack until it finds a method with
a matching catch block for it

 If one is found, control jumps back to that
method

 If none is found, the program crashes

 Exceptions allow non-local error handling

 A method many levels up the stack can handle
a deep error

Propagating an exception

// returns: x such that ax^2 + bx + c = 0

// throws: IllegalArgumentException if no real soln exists

double solveQuad(double a, double b, double c)

 throws IllegalArgumentException

{

 // No need to catch exception thrown by sqrt

 return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

• How can clients know whether a set of arguments to solveQuad is illegal?

11/2/2011

3

Exception translation

// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)
 throws NotRealException
{
 try {
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
 } catch (IllegalArgumentException e) {
 throw new NotRealException();
 }
}

class NotRealException extends Exception {

 NotRealException() { super(); }

 NotRealException(String message) { super(message); }

 NotRealException(Throwable cause) { super(cause); }

 NotRealException(String msg, Throwable c) {

 super(msg, c); }

}

Exception

chaining

Special values

 Special values are often used to inform a client of a
problem
 null Map.get

 -1 indexOf

 NaN sqrt of negative number

 Problems with using special value
 Hard to distinguish from real results

 Error-prone
 The programmer may forget to check the result?

 The value should not be legal – should cause a failure later

 Ugly

 Often inefficient

Can use exceptions instead

 Special results through exceptions

 Expected

 Unpredictable or unpreventable by client

 Take special action and continue computing

 Should always check for this condition

 Should handle locally

Exceptions for failure

 Different from use for special values

 Failures are

 Unexpected

 Should be rare with well-written client and library

 Can be the client’s fault or the library’s

 Usually unrecoverable

 Usually can’t recover

 If the condition is not checked, the exception
propagates up the stack

 The top-level handler prints the stack trace

The finally block

try {

 code…

} catch (type name) {

 code… to handle the exception

} finally {

 code… to run after the try or catch finishes

}

 finally is often used for common “clean-up” code
try {

 // ... read from out; might throw

} catch (IOException e) {

 System.out.println("Caught IOException: “

 + e.getMessage());

} finally {

 out.close();

}

Why catch exceptions locally?

 Failure to catch exceptions violates modularity

 Call chain: AIntegerSet.insertIntegerList.insert

 IntegerList.insert throws an exception

 Implementer of IntegerSet.insert knows how list is being used

 Implementer of A may not even know that IntegerList exists

 Procedure on the stack may think that it is handling an
exception raised by a different call

 Better alternative: catch it and throw it again

 “chaining” or “translation” – show earlier

 Do this even if the exception is better handled up a level

 Makes it clear to reader of code that it was not an omission

11/2/2011

4

Java throwable hierarchy

 Checked exceptions for special cases

 Library: must declare in signature

 Client: must either catch or declare

 Even if you can prove it will never happen at run time

 There is guaranteed to be a dynamically enclosing catch

 Unchecked exceptions for failures

 Library: no need to declare

 Client: no need to catch

 RuntimeException and Error

 and their subclasses

Throwable

Runtime-

Exception

Error Exception

checked

exceptions

…

exception hierarchy

UW CSE331 Autumn 2011

20

Catching with inheritance

try {

 code…

} catch (FileNotFoundException fnfe) {

 code… to handle the file not found exception

} catch (IOException ioe) {

 code… to handle any other I/O exception

} catch (Exception e) {

 code to handle any other exception

}

 a SocketException would match the second block

 an ArithmeticException would match the third

block

Avoid proliferation of checked

exceptions

 Unchecked exceptions are better if clients will usually write
code that ensures the exception will not happen

 There is a convenient and inexpensive way to avoid it

 The exception reflects unanticipatable failures

 Otherwise use a checked exception

 Must be caught and handled – prevents program defects

 Checked exceptions should be locally caught and handled

 Checked exceptions that propagate long distances suggests bad
design (failure of modularity)

 Java sometimes uses null (or NaN, etc.) as a special value

 Acceptable if used judiciously, carefully specified

 But too easy to forget to check

Ignoring exceptions

 Effective Java Tip #65: Don't ignore exceptions

 An empty catch block is (a common) poor style –

often done to get code to compile or hide an error
try {

 readFile(filename);

} catch (IOException e) {} // do nothing on error

 At a minimum, print out the exception so you know it

happened
} catch (IOException e) {

 e.printStackTrace(); // just in case

}

Exceptions in review I

 Use an exception when

 Used in a broad or unpredictable context

 Checking the condition is feasible

 Use a precondition when

 Checking would be prohibitive (e.g., requiring that a list be
sorted)

 Used in a narrow context in which calls can be checked

 Avoid preconditions because

 Caller may violate precondition

 Program can fail in an uninformative or dangerous way

 Want program to fail as early as possible

 How do preconditions and exceptions differ, for the client?

11/2/2011

5

Exceptions in review II

 Use checked exceptions most of the time

 Handle exceptions earlier rather than later

 Not all exceptions are errors

 A program structuring mechanism with non-local jumps

 Used for exceptional (unpredictable) circumstances

Next steps

UW CSE331 Autumn 2011

 Assignment 4: out, due Wednesday November 9,

2011 at 11:59PM

 Lectures: F, Polymorphism/generics; M, Debugging

26

