11/2/2011

postcondition

representation invariant

other properties that you know to be true
11 Check statically via reasoning and possibly tools
11 Check dynamically at run time via assertions

assert index >= 0;

assert size % 2 == 0 : “Bad size for ” + toString();

1 Write the assertions as you write the code

Failure: String.reverse(“sneppah tihs”)
==
o
o Industrial: Chernobyl, Three Mile Island, Bhopal, Fukushima
Everybody plays the fool ... Daiichi, ...
--.there’s no exception to the rule o Aerospace: Challenger, Columbia, Soyuz I, Apollo |, Ariane 5
o Aviation: AF4590 (Concorde), AA587
1 Construction: Hyatt Regency walkway (KC, 1981), the last
CSE 331 Husky Stadium remodel (1987)
o And many, many more
SOFTWARE DESIGN & IMPLEMENTATION
EXCEPTIONS AND ASSERTIONS 01 Henry Petroski (i) has written broadly on the role
of failure in engineering
Software errors are inevitable, too Avoiding errors
| ==
o Not famous software failures, but how to think more about reducing T e .
the chances of failure and the consequences of failure oA precondmon prOhlblfs misuse of your code
Reducing the chances of failure is usually considered software reliability Adding a precondiﬁon weakens the spec
Reducing the consequences of failure is usually considered software .
safety 0 This ducks the problem
“A car that doesn't start is unreliable; a car that doesn’t stop is unsafe.: .
i i Does not address errors in your own code
0 Software failure causes include L.
Misuse of your code (e.g., precondition violation) Does not help others who are misusing your code
Errors in your code (e.g., bugs, representation exposure, ...re) . ope . Lo
Unpredicted /unpredictable external problems (e.g., out of memory, = Removmg the precondmon requires specn‘ylng the
missing file, memory corruption, ...) behavior
i 2
o How ?NOU'd you categorize these? Strengthens the spec
Failure of a subcomponent
No return value (e.g., list element not found, division by zero) Example: specify that an exception is thrown
Defensive programming When not to use assertions
| ==
o Check o Don't clutter the code
x=y + 1;
precondition assert x ==y + 1; // useless,distracting

o1 Don't perform side effects

assert list.remove(x); // modifies behavior if
/ assertion checking disabled

// Better:

boolean found = list.remove (x);

assert found;

o1 Turn them off in rare circumstances (e.g., production code)

Eclipse: set in compiler preferences
Command line
= java -ea runs Java with assertions enabled
= java runs Java with assertions disabled (default)
Most assertions should always be enabled

http://www.youtube.com/watch?v=JNQ0GkGN3yM
http://www.youtube.com/watch?v=IqK2r5bPFTM
http://www.youtube.com/watch?v=IqK2r5bPFTM
http://en.wikipedia.org/wiki/Henry_Petroski
http://www.historylink.org/db_images/wa_stadium.JPG

11/2/2011

When something goes wrong

Square root without exceptions

1 Something goes wrong: an assertion fails (or would have failed if it
were there)

Fail early, fail friendly

o

o1 Goal 1: Give information about the problem
o To the programmer: a good error message is key!
o To the client code

1 Goal 2: Prevent harm from occurring
o Abort: inform a human (and perform or make it easier for them to
perform cleanup actions, loging the error, etc.)
Re-try: problem might be transient
Skip a subcomputation: permit rest of program to continue
Fix the problem during execution (usually infeasible)
= External problem: no hope; just be informative
= Internal problem: if you can fix, you can prevent

Square root with assertion Square root, specified for all inputs

Throwing and catching Propagating an exception

o At any time, your program has an active call
stack of methods
o The call stack is not the same as nesting of
classes or packages or such — it reflects which
methods called which methods during this Method call
specific execution
o1 When an exception is thrown, the JVM looks
up the call stack until it finds a method with

a matching catch block for it Method call
o If one is found, control jumps back to that
method
o If none is found, the program crashes Method call
. Exceptions allow non-local error handii * How can clients know whether a set of arguments to solveQuad is illegal?

o A method many levels up the stack can handle
a deep error

11/2/2011

Exception translation

// returns: x such that ax*2 + bx + ¢ = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)
throws NotRealException
{

try {
return (-b + sqrt(b*b - 4*a*c)) / (2*a);
} catch (IllegalArgumentException e) {
throw new NotRealException();
1

Exception
chaining

}

class NotReal on
NotRealException() { super(); }
NotReal ion(String) { super ;
NotRealException (Throwable cause) { super(cause); }
NotRealException (String msg, Throwable c) {
super (msg, c); }

ption {

Special values

Special values are often used to inform a client of a
problem
null Map.get
-1 indexOf
NaN sqgrt of negative number
Problems with using special value
Hard to distinguish from real results
Error-prone
The programmer may forget to check the result?
The value should not be legal — should cause a failure later
Ugly
Often inefficient

Can use exceptions instead

Special results through exceptions
Expected
Unpredictable or unpreventable by client
Take special action and continue computing
Should always check for this condition
Should handle locally

Exceptions for failure

Different from use for special values
Failures are
Unexpected
Should be rare with well-written client and library
Can be the client’s fault or the library’s
Usually unrecoverable
Usually can’t recover

If the condition is not checked, the exception
propagates up the stack

The top-level handler prints the stack trace

The finally block

try {
code...
} catch (type name) {
code.. to handle the exception
} finally {
code.. to run after the try or catch finishes

}

finally is often used for common “clean-up” code
try {
// ... read from out; might throw
catch (IOException e) {
System.out.println("Caught IOException: “
+ e.getMessage()) ;

finally {
out.close() ;

Why catch exceptions locally?

Failure to catch exceptions violates modularity
Call chain: A—Integerset.insert—>IntegerList.insert
IntegerList.insert throws an exception
Implementer of IntegerSet.insert knows how list is being used
Implementer of A may not even know that IntegerList exists
Procedure on the stack may think that it is handling an
exception raised by a different call
Better alternative: catch it and throw it again
“chaining” or “translation” — show earlier
Do this even if the exception is better handled up a level
Makes it clear to reader of code that it was not an omission

11/2/2011

Java throwable hierarchy

Checked exceptions for special cases
Library: must declare in signature
Client: must either catch or declare
Even if you can prove it will never happen at run time
There is guaranteed to be a dynamically enclosing catch
Unchecked exceptions for failures
Library: no need to declare
Client: no need to catch

RuntimeException and Error

and their subclasses

Exception ‘ Error ‘

checked Runtime-
exceptions Exception

exception hierarchy

Exeapion

ClasshatFundExcaplion | |DalaFormatEscepton| | 10Bscaplion | | MoSuchethodException | | Runiimexcaption | S0LEssaplion

FilelofFeundEsception | MakormedURL Exceplion | | SockedException)

|
—

UW CSE331 Autumn 2011

Catching with inheritance

try {
code...
} catch (FileNotFoundException fnfe) {
code.. to handle the file not found exception
} catch (IOCException ioce) {
code.. to handle any other I/O exception
} catch (Exception e) {
code to handle any other exception

}

U o SocketException would match the second block
O an ArithmeticException would match the third
block

Avoid proliferation of checked
exceptions

Unchecked exceptions are better if clients will usually write
code that ensures the exception will not happen

There is a convenient and inexpensive way to avoid it

The exception reflects unanticipatable failures
Otherwise use a checked exception

Must be caught and handled — prevents program defects

Checked exceptions should be locally caught and handled

Checked exceptions that propagate long distances suggests bad
design (failure of modularity)

Java sometimes uses null (or NaN, etc.) as a special value
Acceptable if used judiciously, carefully specified
But too easy to forget to check

Ignoring exceptions

Effective Java Tip #65: Don't ignore exceptions

An empty catch block is (a common) poor style —

often done to get code to compile or hide an error

try {
readFile (filename) ;

} catch (IOException e) {} // do nothing on error

At a minimum, print out the exception so you know it
happened
} catch (IOException e) {

e.printStackTrace () ; // just in case

}

Exceptions in review |

Use an exception when
Used in a broad or unpredictable context
Checking the condition is feasible

Use a precondition when

Checking would be prohibitive (e.g., requiring that a list be
sorted)

Used in a narrow context in which calls can be checked
Avoid preconditions because
Caller may violate precondition
Program can fail in an uninformative or dangerous way
Want program to fail as early as possible
How do preconditions and exceptions differ, for the client?

11/2/2011

Exceptions in review Il

Use checked exceptions most of the time
Handle exceptions earlier rather than later
Not all exceptions are errors
A program structuring mechanism with non-local jumps

Used for exceptional (unpredictable) circumstances

Next steps

Assignment 4: out, due Wednesday November 9,
2011 at 11:59PM

Lectures: F, Polymorphism/generics; M, Debugging

UW CSE331 Autumn 2011

