
1

CSE 331

SOFTWARE DESIGN &

IMPLEMENTATION

REASONING I

Autumn 2011

From last lecture

CSE 331 Autumn 2011

2

Today and

Wednesday

Reasoning about code

 Determine what facts are true during execution –

we’ve seen these as assertions, representation

invariants, preconditions, postconditions, etc.

 x > 0

 for all nodes n: n.next.previous == n

 array a is sorted

 x + y == z

 if x != null then x.a > x.b

 These can help…

 … increase confidence that code is correct

 … understand why code is incorrect

CSE 331 Autumn 2011

3

Forward reasoning

 Given a precondition, what is the postcondition?

 Example

// precondition: x is even

x = x + 3;

y = 2x;

x = 5;

// postcondition: ??

 One use: rep invariant holds before running code,

does it still hold after running code?

CSE 331 Autumn 2011

4

Backward reasoning

 Given a postcondition, what is the corresponding

precondition?

 Example

// precondition: ??

x = x + 3;

y = 2x;

x = 5;

// postcondition: y > x

 Uses include: what is needed to re-establish rep

invariant, to reproduce a bug, to exploit a bug?

CSE 331 Autumn 2011

5

Ex: SQL injection attack

 SQL query constructed using unfiltered user input
query = “SELECT * FROM users ”

 + “WHERE name=‘” + userInput + “’;”;

 If the user inputs a’ or ‘1’=‘1 this results in
query SELECT * FROM users

 WHERE name=‘a’ or ‘1’=‘1’;

 This query returns information about all users – bad!

http://xkcd
.com/327/

6

http://xkcd.com/327/

2

Forward vs. backward reasoning

 Forward reasoning is more intuitive for most people

 Helps you understand what will happen (simulates the

code)

 Introduces facts that may be irrelevant to your task

 Backward reasoning is usually more helpful

 Helps you understand what should happen

 Given a specific task, indicates how to achieve it – for

example, it can help creating a test case that exposes

a specific error

CSE 331 Autumn 2011

7

Reasoning about code statements

 Convert assertions about programs into logic

 One logic representation is a Hoare triple:
P {Java code} Q

 P and Q are logical assertions about program

values

 The triple means “if P is true and you execute code,

then Q is true afterward”

 A Hoare triple is a boolean – true or false

 Or YFPL: Your favorite programming language CSE 331 Autumn 2011

8

CSE 331 Autumn 2011

9

Tiny examples

true

 {y = x * x}

y 0

x 0

 {y = x * x}

y > 0

x > 0

 {y = x + 1}

y > 1

T or F?

T or F?

T or F?

Partial examples

CSE 331 Autumn 2011

10

x = k

 {if x < 0 x = -x}

?

?

 {x = 3}

x = 8

Replace ? with

what to get

true

Replace ? with

what to get

true

Longer example

x 0 {

 z = 0;

 if (x != 0) z = x; else z = z + 1;}

z > 0

assert x >= 0; // x 0

z = 0; // x 0 z = 0

if (x != 0)

 z = x; // x > 0 z = x

else

 z = z + 1; // x = 0 z = 1

assert z > 0; // (x > 0 z = x)

 // (x = 0 z = 1)

CSE 331 Autumn 2011

11

Hoare

triple:

T or F?

Reasoning:

what we

know after

each

program

point

 z > 0

QED

Strongest or weakest conditions?

 x = 5

 {x = x * 2}

true

 x = 5

 {x = x * 2}

x > 0

 x = 5

 {x = x * 2}

x = 10 x = 5

 x = 5

 {x = x * 2}

x = 10

 All are true Hoare triples – which

postcondition is most valuable, and

why?

 x = 5 y = 10

 {z = x/y}

z < 1

 x < y y > 0

 {z = x/y}

z < 1

 y ≠ 0 x / y < 1

 {z = x/y}

z < 1

 All are true Hoare triples – which

precondition is most valuable, and

why?

CSE 331 Autumn 2011

12

3

Weakest precondition

 y ≠ 0 x / y < 1

 {z = x/y}

z < 1

(the last one) is the most useful because it allows us to

invoke the program in the most general condition

 It is called the weakest precondition, wp(S,Q) of S with

respect to Q

 If P {S} Q and for all P’ such that P’ P, then P is

wp(S,Q)

CSE 331 Autumn 2011

13

A rule for each language construct

 The above examples use intuition to discuss the Hoare

triples

 Specifically to understand how the code affects the

 precondition to determine the (strongest) postcondition,

using forward reasoning

 postcondition to determine the (weakest) precondition,

using backward reasoning

 To replace the intuition with a mechanical transformation –

needed for precision and for automation – each language

construct must be explicitly defined using the logic

CSE 331 Autumn 2011

14

Sequential execution or:

What does ; really mean?

 P {S1;S2} Q

 Compute the intermediate

assertion

A = wp(S2,Q)

 This means that

P {S1} (A {S2} Q)

 Compute the assertion

T = wp(S1,A)

 This means that

T {S1} (A {S2} Q)

 If PT the triple is true

 We reason backwards to

compose the statements

x > 0

 {y = x*2;

 z = y/2

 }

z > 0

CSE 331 Autumn 2011 15

x > 0

 {y = x*2}

y > 0

 {z = y/2}

z > 0

Conditional execution

 P {if C S1 else S2} Q

 Must consider both branches – consider

true

 {

 if x >= y

 z = x;

 else

 z = y;

 }

z = x z = y

 But something is missing – knowledge about the value of the

condition
CSE 331 Autumn 2011

P {if C S1 else S2} Q

 The precise definition of a conditional (if-then-else)

statement takes into account the condition’s value

and both branches

 (P C {S1} Q)

 (P C {S2} Q)

 Even though at execution only one branch is taken,

the proof needs to show that both will satisfy Q

 Or wp(if C S1; else S2;,Q) is equal to

Cwp(S1,Q) Cwp(S2,Q)

CSE 331 Autumn 2011

17

Example

?
 {
 if (x < 5)
 x = x*x;
 else
 x = x+1;
 }
x 9

-4 -3 -2 -1 0 7 2 1 4 6 5 3 8 9
CSE 331 Autumn 2011

18

Cwp(S1,Q) Cwp(S2,Q)

 wp(if (x<5) {x = x*x;} else {x = x+1}, x9)

 (x<5)wp(x=x*x;, x9) (x5)wp(x=x+1;, x9)

 (x<5)x*x9 (x5)x+19

 ((x-3) ∨ (x3 x<5)) x8

4

Assignment statements

 What does the statement x = E really mean?

 Q(E) {x = E} Q(x)

 That is, if we knew something to be true about E

before the assignment, then we know it to be true

about x after the assignment

 Assuming no side-effects

 wp(x=E;, Q) is Q with x replaced by E

CSE 331 Autumn 2011

19

Examples

Q(E) {x = E} Q(x)

y > 0

 {x = y}

x > 0

CSE 331 Autumn 2011

20

x > 0

 {x = x + 1}

x > 1

Q(x+1) x + 1 > 1

 x > 0

Q(x) x > 1

Q(y) y > 0

Q(x) x > 0

CSE 331 Autumn 2011

21

More examples

?

 {x = y + 5}

x > 0

Replace ? with

what to get

true

x = A y = B

 {

 t = x;

 x = y;

 y = t;

 }

x = B y = A

true or false?

Method calls

?

 {x = foo()}

Q

 If the method has no side effects, it’s just like

ordinary assignment

(y = 22 y = -22)

 {x = Math.abs(y)}

x = 22

CSE 331 Autumn 2011

22

With side effects

 If it has side effects it also needs an assignment to

every variable in modifies

 Use the method specification to determine the new

value

z+1 = 22

 {incrZ()} // spec: zpost = zpre + 1

z = 22

CSE 331 Autumn 2011

23

CSE 331 Autumn 2011

24

Loops: P {while B do S} Q

 A loop represents an unknown number of paths (and

recursion presents the same problem as loops

 Cannot enumerate all paths – this is what makes

testing and reasoning hard

 Trying to unroll the loop doesn’t work, since we don’t

know how many times the loop can execute

(P B {S} Q)

(P B {S} Q B)

(P B {S} Q B) {S} Q B …

5

Loop invariant

 The most common approach to this is to find a loop

invariant, a predicate that is

 true each time the loop head is reached (on entry and

after each iteration)

 and helps us prove the postcondition of the loop

 Essentially, we will prove the properties inductively

 Find a loop invariant I such that
 P I //Invariant is correct on entry

 B I {S} I //Invariant is maintained

 B I Q //Loop termination proves Q

CSE 331 Autumn 2011

25

Example

x 0 y = 0 {

 while (x != y)

 y = y + 1;

x = y

 An invariant that works: LI = x y

1. x0 y=0 LI

2. LI x≠y {y = y+1} LI

3. (LI (x≠y)) x=y

CSE 331 Autumn 2011

26

P I //Invariant is correct on entry

B I {S} I //Invariant is maintained

B I Q //Loop termination proves Q

Example

n > 0

 {

 x = a[1];

 i = 2;

 while i <= n {

 if a[i] > x

 x = a[i];

 i = i + 1;

 }

 }

x = max(a[1],…,a[n])

CSE 331 Autumn 2011

27

Ideas for an

effective loop

invariant?

P I //Invariant is correct on entry

B I {S} I //Invariant is maintained

B I Q //Loop termination proves Q

Termination

 Proofs with loop invariants do not guarantee that the
loop terminates, only that it does produce the proper
postcondition if it terminates – this is called weak
correctness

 A Hoare triple for which termination has been proven is
strongly correct

 Proofs of termination are usually performed separately
from proofs of correctness, and they are usually
performed through well-founded sets

 In the max example it’s easy, since i is bounded by n, and
i increases at each iteration

CSE 331 Autumn 2011

28

Choosing loop invariants

 For straightline code, the wp gives us the appropriate
property

 For loops, you have to guess the loop invariant and
then apply the proof techniques

 If the proof doesn't work

 Maybe you chose an incorrect or ineffective invariant –
choose another and try again

 Maybe the loop is incorrect – gotta fix the code

 Automatically choosing loop invariants is a research
topic

CSE 331 Autumn 2011

29

When to use code proofs for loops

 Most of your loops need no proofs

 for (String name : friends) { ... }

 Write loop invariants and decrementing functions

when you are unsure about a loop

 If a loop is not working

 Add invariant

 Write code to check them

 Understand why the code doesn't work

 Reason to ensure that no similar bugs remain

CSE 331 Autumn 2011

30

6

Next steps

CSE 331 Autumn 2011

31

 Wednesday: reasoning II; Friday: usability;

Monday: UML; Wednesday: TBA

 A5 and A6

CSE 331 Autumn 2011 32

