

Reasoning about code

\square Determine what facts are true during execution we've seen these as assertions, representation invariants, preconditions, postconditions, etc.

- $\mathbf{x}>0$
- for all nodes n : n .next. previous $=\mathrm{n}$
-array a is sorted
- $x+y==z$
- if \mathbf{x} != null then $\mathbf{x . a}>\mathbf{x . b}$
\square These can help...
$\square .$. increase confidence that code is correct
$\square .$. understand why code is incorrect

Backward reasoning

\square Given a postcondition, what is the corresponding precondition?
Example
// precondition: ??
$\mathbf{x}=\mathbf{x}+3$;
$y=2 x$;
$\mathbf{x}=5$;
// postcondition: $\mathbf{y}>\mathrm{x}$
\square Uses include: what is needed to re-establish rep invariant, to reproduce a bug, to exploit a bug? CSE 331 Autumn 2011

Ex: SQL injection attack

```
\square \text { SQL query constructed using unfiltered user input}
    query = "SELECT * FROM users "
            + "WHERE name=`" + userInput + "';";
\square If the user inputs a' or ' }1\mathrm{ '='1 this results in
    query }=>\mathrm{ SELECT * FROM users
            WHERE name='a' or '1'='1';
This query returns information about all users - bad!
```


http://xkcd .com/327/

Forward vs. backward reasoning

\square Forward reasoning is more intuitive for most people
\square Helps you understand what will happen (simulates the code)

- Introduces facts that may be irrelevant to your task
\square Backward reasoning is usually more helpful
- Helps you understand what should happen
- Given a specific task, indicates how to achieve it - for example, it can help creating a test case that exposes a specific error

CSE 331 Autumn 2011

Tiny examples

Tor F?

Tor F?

Tor F?

Partial examples

```
x = k
    {if x<0 x = -x}
?
?
    {x = 3}
x = 8
```

Replace ? with
what to get
true
Replace? with
what to get
true

Replace ? with
true
Replace ? with
what to get
true

Reasoning about code statements

\square Convert assertions about programs into logic
\square One logic representation is a Hoare triple: P \{Java* code\} Q
$\square \mathrm{P}$ and Q are logical assertions about program values
\square The triple means "if P is true and you execute code, then Q is true afterward"

A Hoare triple is a boolean - true or false

Strongest or weakest conditions?

```
\(x=5\)
\(\{x=x\) * 2\(\}\)
\{x \(=x\) * 2\(\}\)
true
\(x=5\)
\(\{x=x * 2\}\)
\(x>0\)
\(x=5\)
\(x=5\)
\(\{x=x * 2\}\)
\(x=10 \vee x=5\)
\(x=5\)
\(\{x=x\) * 2\(\}\)
\(\mathbf{x}=10\)
All are true Hoare triples - which postcondition is most valuable, and
```

$x=5 \wedge y=10$
$\{z=x / y\}$
$z<1$ why?
$x<y \wedge y>0$
$\{z=x / y\}$
$z<1$
$\mathrm{y} \neq 0 \wedge \mathrm{x} / \mathrm{y}<1$
$\{z=x / y\}$
$z<1$
All are true Hoare triples - which precondition is most valuable, and why?

CSE 331 Autumn 201

Weakest precondition

```
y fon x / y < 1
    {z = x/y}
    z< 1
    (the last one) is the most useful because it allows us to
    invoke the program in the most general condition
It is called the weakest precondition, wp (S,Q) of S with
    respect to Q
| If P{S} Q and for all P' such that P' }\mp@subsup{P}{}{\prime}=>P\mathrm{ , then P is
    wp (S,Q)
```


Sequential execution or:
 What does ; really mean?

$\square \mathrm{P}\left\{\mathrm{S}_{1} ; \mathrm{S}_{2}\right\} \mathbf{Q}$	$\mathbf{x}>0$
- Compute the intermediate assertion	$\begin{aligned} \{y & =x * 2 \\ z & =y / 2 \end{aligned}$
$\mathrm{A}=\mathrm{wp}\left(S_{2}, \mathrm{Q}\right)$	\}
\square This means that	$z>0$
$P\left\{S_{1}\right\}$ (A $\left\{S_{2}\right\}$ Q)	
\square Compute the assertion	$\mathbf{x}>0$
$\mathbf{T}=\mathrm{wp}\left(\mathrm{S}_{1}, \mathrm{~A}\right)$	$\{\mathrm{y}=\mathrm{x} * 2\}$
- This means that	$\mathrm{y}>0$
$T\left\{S_{1}\right\}$ ($A\left\{S_{2}\right\}$ Q)	$\{\mathrm{z}=\mathrm{y} / 2\}$
- If $P \Rightarrow T$ the triple is true	$z>0$

$\square P\left\{S_{1} ; S_{2}\right\} Q$
Compute the intermediate assertion

This means that
$P\left\{S_{1}\right\} \quad\left(A \quad\left\{S_{2}\right\} \quad Q\right)$
Compute the assertion $T=w p\left(S_{1}, A\right)$
$\mathbf{T}\left\{\mathrm{S}_{1}\right\}$ ($\mathbf{A}\left\{\mathrm{S}_{2}\right\}$ Q)
If $P \Rightarrow T$ the triple is true
We reason backwards to compose the statements

15 CSE 331 Autumn 2011

A rule for each language construct

\square The above examples use intuition to discuss the Hoare triples
\square Specifically to understand how the code affects the
\square precondition to determine the (strongest) postcondition, using forward reasoning
\square postcondition to determine the (weakest) precondition, using backward reasoning
\square To replace the intuition with a mechanical transformation needed for precision and for automation - each language construct must be explicitly defined using the logic

Conditional execution

```
\(\square \mathbf{P}\) \{if \(C S_{1}\) else \(\left.S_{2}\right\}\) Q
\(\square\) Must consider both branches - consider
    true
    \{
        if \(x>=y\)
        \(\mathrm{z}=\mathrm{x}\);
    else
        \(z=y ;\)
    \}
\(z=x \vee z=y\)
```

\square But something is missing - knowledge about the value of the condition

P \{if C S_{1} else $\left.S_{2}\right\}$ Q

The precise definition of a conditional (if-then-else) statement takes into account the condition's value and both branches

$$
\begin{aligned}
& \left(P \wedge C\left\{S_{1}\right\} Q\right) \wedge \\
& \text { (} \mathrm{P} \wedge \neg \mathrm{C}\left\{\mathrm{~S}_{2}\right\} \mathrm{Q} \text {) }
\end{aligned}
$$

\square Even though at execution only one branch is taken, the proof needs to show that both will satisfy Q
Orwp (if C S_{1}; else $S_{2} ;, Q$) is equal to $C \Rightarrow w p\left(S_{1}, Q\right) \wedge \neg C \Rightarrow w p\left(S_{2}, Q\right)$

Example $\quad c \Rightarrow w p\left(S_{1}, 2\right) \wedge \neg C \Rightarrow w p\left(S_{2}, 2\right)$

${ }^{18}$

```
?
```


wp (if ($x<5$) $\left\{x=x^{\star} x\right.$; $\}$ else $\{x=x+1\}, x \geq 9$)
$(x<5) \Rightarrow w p\left(x=x^{*} x ;, x \geq 9\right) \quad \wedge(x \geq 5) \Rightarrow w p(x=x+1 ;, x \geq 9)$
$(x<5) \Rightarrow x^{*} x \geq 9 \quad \wedge(x \geq 5) \Rightarrow x+1 \geq 9$
$((x \leq-3) \vee(x \geq 3 \wedge x<5)) \quad \wedge x \geq 8$

-4-3-2-10123456789
CSE 331 Autumn 2011

Assignment statements

\square What does the statement $\mathbf{x}=\mathbf{E}$ really mean?
Q (E) $\quad\{x=E\} \quad Q(x)$
\square That is, if we knew something to be true about E before the assignment, then we know it to be true about \mathbf{x} after the assignment
\square Assuming no side-effects
wp (x=E; Q) is Q with x replaced by E

More examples

```
?
    {x=y+5}
x > 0
x = A ^ y = B
    {
        t = x;
        x = y;
        y=t;
    }
x}=\textrm{B}\wedge\mathbf{y}=\textrm{A
```

Replace ? with
what to get
true

With side effects

\square If it has side effects it also needs an assignment to every variable in modifies
\square Use the method specification to determine the new value
$z+1=22$
\{incrZ()\} // spec: $z_{\text {post }}=z_{\text {pre }}+1$
$z=22$

Loops: P \{while B do S\} Q

\square A loop represents an unknown number of paths (and recursion presents the same problem as loops
\square Cannot enumerate all paths - this is what makes testing and reasoning hard
Trying to unroll the loop doesn't work, since we don't know how many times the loop can execute
($\mathrm{P} \wedge$ ค B
\{S\} Q) \wedge
$(P \wedge B \quad\{S\} Q \wedge \neg B) \wedge$
$(P \wedge B \quad\{S\} Q \wedge B)\{S\} Q \wedge \neg B \wedge \ldots$

CSE 331 Autumn 2011

Loop invariant

\square The most common approach to this is to find a loop invariant, a predicate that is
\square true each time the loop head is reached (on entry and after each iteration)
\square and helps us prove the postcondition of the loop
\square Essentially, we will prove the properties inductively
\square Find a loop invariant I such that

$$
\begin{array}{ll}
\mathrm{P} \Rightarrow \mathrm{I} & \text { //Invariant is correct on entry } \\
\mathrm{B} \wedge \mathrm{I}\{\mathrm{~S}\} \mathrm{I} & \text { //Invariant is maintained } \\
\neg \mathrm{B} \wedge \mathrm{I} \Rightarrow \mathrm{Q} & \text { //Loop termination proves } Q
\end{array}
$$

Termination

\square Proofs with loop invariants do not guarantee that the loop terminates, only that it does produce the proper postcondition if it terminates - this is called weak correctness
\square A Hoare triple for which termination has been proven is strongly correct
\square Proofs of termination are usually performed separately from proofs of correctness, and they are usually performed through well-founded sets
\square In the max example it's easy, since i is bounded by n, and i increases at each iteration

Choosing loop invariants

\square For straightline code, the wp gives us the appropriate property
\square For loops, you have to guess the loop invariant and then apply the proof techniques
\square If the proof doesn't work

- Maybe you chose an incorrect or ineffective invariant choose another and try again
- Maybe the loop is incorrect - gotta fix the code
\square Automatically choosing loop invariants is a research topic

When to use code proofs for loops

\square Most of your loops need no proofs
\square for (String name : friends) \{ ... \}
\square Write loop invariants and decrementing functions when you are unsure about a loop
\square If a loop is not working
\square Add invariant
\square Write code to check them
\square Understand why the code doesn't work
\square Reason to ensure that no similar bugs remain

Next steps
\square Wednesday: reasoning II; Friday: usability; Monday: UML; Wednesday: TBA
\square A5 and A6

