CSE 331

SOFTWARE DESIGN &
IMPLEMENTATION
REASONING |

Reasoning about code
-

0 Determine what facts are true during execution —
we've seen these as assertions, representation

invariants, preconditions, postconditions, etc.
x>0

for all nodes n: n.next.previous == n
array a is sorted
X +y==
if x !'= null then x.a > x.b
o These can help...
... increase confidence that code is correct

... understand why code is incorrect
CSE 331 Autumn 2011

Backward reasoning
==
o Given a postcondition, what is the corresponding
precondition?
o Example
// precondition: ??
X =x + 3;
y = 2x;
x =5;
// postcondition: y > x
0 Uses include: what is needed to re-establish rep
invariant, to reproduce a bug, to exploit a bug?

CSE 331 Autumn 2011

From last lecture
Ways:to get yaur code right
=

= Verification/quality assurance
Purpose is fo- uncover proklems cnd increase confidence

’/yheasoning and test
Qing

Today and
Wednesday

Finding out why.a program is not functioning ds infended
o Defensive programming

Programming with validation and debugging in mind
o Testing # debugging

test: ° reveals existence of problem; test suite can also
increase overall confidence

debug: pinpoint location + cause of problem

CSE 331 Autumn 2011

Forward reasoning
==
o Given a precondition, what is the postcondition?
o Example
// precondition: x is even
x =x + 3;
y = 2x;
x =5;
// postcondition: ??

1 One use: rep invariant holds before running code,
does it still hold after running code?

CSE 331 Autumn 2011

Ex: SQL injection attack

| el
o SQL query constructed using unfiltered user input

query = “SELECT * FROM users ”

+ “WHERE name=‘"” + userInput + “';”;

0 If the user inputs a’ or ‘17='1 this results in

query = SELECT * FROM users

WHERE name=‘a’ or ‘1/=‘1’;

o1 This query returns information about all users — bad!

Hi, THIS 15 OH, DEAR - DID HE | DID Y0U REALLY WELL WEVE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOLR SON YEAR'S STUDENT RECERDS.
WERE HAING SOME Robert'); DROP T HOPE YOURE HAPPY.

CoMPUTER TrowmiE. | 1N A WAY= TRELE Sherts;—~ 7

AND T H(PE
~OH. YES UTILE “~ YOUVE LEARNED

X e/
i & http://xkcd
a\éﬁ :? BOREY TRRLES, TOSHVTIZE IR
B i I II I WE CALL Hif DaveE neys | €O/ 327/

http://xkcd.com/327/

Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

Helps you understand what will happen (simulates the
code)

Introduces facts that may be irrelevant to your task
Backward reasoning is usually more helpful
Helps you understand what should happen

Given a specific task, indicates how to achieve it — for
example, it can help creating a test case that exposes
a specific error

CSE 331 Autumn 2011

Reasoning about code statements

Convert assertions about programs into logic

One logic representation is a Hoare triple:
P {Java* code} Q

P and Q are logical assertions about program
values

The triple means “if P is tfrue and you execute code,
then Q is true afterward”

A Hoare triple is a boolean — true or false

* Or YFPL: Your favorite programming language CSE 331 Autumn 2011

Tiny examples

true
{y = x * x} Tor F2
y =0

{y = x * x} T or F2

{y = x + 1} T or F2

CSE 331 Autumn 2011

Partial examples

x =k Replace ? with
{if x < 0 x = -x} what to get

? true

? Replace ? with
{x = 3} what to get

x = 8 true

CSE 331 Autumn 2011

Longer example

x 20 {
z =0; Hoare
if (x '=0) z = x; else z =z + 1;} triple:
z >0 TorF?
assert x >= 0; // x20
z=0; // x20Az=0 Reasoning:
if (x !'= 0) what we
z = x; // x>0Az=x know after
else each
z =2z + 1; U mm——— program
assert z > 0; f (x>0 Az =2Xx)A point
S (x=0Az=1)
=2z >0
QED CSE 331 Autumn 2011

Strongest or weakest conditions?

x =5 x=5Ay =10
{x =x* 2} {z = x/y}
true z <1
x =5 x<yAay>0
{x = x * 2} {z = x/y}
x>0 z <1
x=5 y#0Aax/y<1
{x = x * 2} {z = x/y}
x=10vx=25 z <1
x=5 All are true Hoare triples — which
{x = x * 2} precondition is most valuable, and
x = 10 why?

All are true Hoare triples — which
posteondition is most valuable, and
why?

CSE 331 Autumn 2011

Weakest precondition

y#0Aax/y<1
{z = x/y}
z<1

(the last one) is the most useful because it allows us to
invoke the program in the most general condition

It is called the weakest precondition, wp (S, Q) of S with
respect to Q

If P {S} Qand for all P’ such that P’ = P, then P is
wp (S,Q)

CSE 331 Autumn 2011

A rule for each language construct

The above examples use intuition to discuss the Hoare
triples
Specifically to understand how the code affects the
precondition to determine the (strongest) postcondition,
using forward reasoning
postcondition to determine the (weakest) precondition,
using backward reasoning
To replace the intuition with a mechanical transformation —
needed for precision and for automation — each language
construct must be explicitly defined using the logic

CSE 331 Autumn 2011

Sequential execution or:
What does ; really mean?

P {S;;S,} Q x>0

Compute the intermediate {y = x*2;
assertion z = y/2
A = wp(S,,Q) }

This means that z >0

P {sS;} (A {s;} Q)

Compute the assertion x>0

T = wp(S,,A) {y = x*2}
This means that y >0

T {S;} (A {S;} Q) {z = y/2}
If P=>T the triple is true z >0

We reason backwards to
compose the statements 15 CSE 331Autumn 2011

Conditional execution

P {if C s, else S,} Q

Must consider both branches — consider

true
{
if x>=y
z = Xx;
else
z =y;
}

zZ=xVz=y

But something is missing — knowledge about the value of the

P {if C S; else S,} Q

The precise definition of a conditional (if-then-else)
statement takes into account the condition’s value
and both branches

(P A C {S;} Q A

(P A =C {S,} Q)
Even though at execution only one branch is taken,
the proof needs to show that both will satisfy Q
Orwp(if C S;; else S,;,Q) isequalto
c:>WP (Sl IQ) A _'c:>WP (Sz IQ)

CSE 331 Autumn 2011

condition
CSE 331 Autumn 2011
Exqmple C=>wp (S;,Q) A —-C=wp(S;,Q)
?
if (x < 5)
X = x*x;
else
x = x+1;
}
x 29
wp (if (x<5) {x = x*x;} else {x = x+1}, x>9)
(%<5) =>wp (x=x*x;, x>9) A (x25)=wp (x=x+1;, x>9)
(x<5)=>x*x>9 A (x25)=>x+129
((x2-3) V (x23 A x<5)) A x28
< 0 >~

-4-3-2-10123456789

CSE 331 Autumn 2011

Assignment statements

What does the statement x = E really mean?
Q(E) {x = E} Q(x)
That is, if we knew something to be true about E

before the assignment, then we know it to be true
about x after the assignment

Assuming no side-effects

wp(x=E;, Q) is Q with x replaced by E

CSE 331 Autumn 2011

Examples

Q(E) {x = E} Q(x)

y >0 : Q(y) =y >0
{(x = y} Q(x) =x>0
x>0 b
2
3
x>0 EQ(x+1)Ex+1>1
{x =x + 1} =x >0
x >1 Q(x) =x>1

CSE 331 Autumn 2011

More examples

? Replace ? with
{x =y + 5} what to get
x>0
true
X=AAYy=B true or false?
{
t = x;
X =y;
y = t;
}

CSE 331 Autumn 2011

Method calls

{x = foo()}

If the method has no side effects, it's just like
ordinary assignment
(y =22vy=-22)
{x = Math.abs(y)}
x = 22

CSE 331 Autumn 2011

With side effects

If it has side effects it also needs an assignment to
every variable in modifies

Use the method specification to determine the new
value

z+1 = 22
{incrz ()} // spec: Zyoe = Zpe + 1
z = 22

CSE 331 Autumn 2011

Loops: P {while B do S} Q

A loop represents an unknown number of paths (and
recursion presents the same problem as loops
Cannot enumerate all paths — this is what makes
testing and reasoning hard

Trying to unroll the loop doesn’t work, since we don’t
know how many times the loop can execute

(P A= B {S} Q) A

(P AB {S} Q A —=B) A

(P AB {S} Q A B) {S} Q A =B A .

CSE 331 Autumn 2011

Loop invariant

The most common approach to this is to find a loop
invariant, a predicate that is
true each time the loop head is reached (on entry and
after each iteration)

and helps us prove the postcondition of the loop
Essentially, we will prove the properties inductively

Find a loop invariant 1 such that

Example

x20Ay =0 {
while (x '=vy)
y=y+1;

X = Y P=>1I //Invariant is correct on entry
BAI({S} I //Invariant is maintained
—_BAI=>Q //Loop termination proves Q

An invariant that works: LI = x > y
x>0 A y=0 = LI
LI A x#y {y = y+1} LI
(LI A = (x#y)) = x=y

CSE 331 Autumn 2011

P=>1 //Invariant is correct on entry
BAI({S}I //Invariant is maintained
-BAI>>Q //Loop termination proves Q
CSE 331 Autumn 2011
Example
P=>1I //Invariant is correct on entry

BAI({S} I //Invariant is maintained
n>0 —-BAI=Q //Loop termination proves Q

Ideas for an
X = a [1] ; effective loop
i=2; invariant?

while i <= n {
if a[i] > x
x = a[i];
i=1i+1;

}

X = max (a [1] reer@ [n]) CSE 331 Autumn 2011

Termination

Proofs with loop invariants do not guarantee that the
loop terminates, only that it does produce the proper
postcondition if it terminates — this is called weak
correctness

A Hoare triple for which termination has been proven is
strongly correct

Proofs of termination are usually performed separately
from proofs of correctness, and they are usually
performed through well-founded sets

In the max example it's easy, since i is bounded by n, and
i increases at each iteration

CSE 331 Autumn 2011

Choosing loop invariants

For straightline code, the wp gives us the appropriate
property

For loops, you have to guess the loop invariant and
then apply the proof techniques

If the proof doesn't work

Maybe you chose an incorrect or ineffective invariant —
choose another and try again

Maybe the loop is incorrect — gotta fix the code
Automatically choosing loop invariants is a research
topic

CSE 331 Autumn 2011

When to use code proofs for loops

Most of your loops need no proofs

for (String name : friends) { ... }
Write loop invariants and decrementing functions
when you are unsure about a loop
If a loop is not working

Add invariant

Write code to check them

Understand why the code doesn't work

Reason to ensure that no similar bugs remain

CSE 331 Autumn 2011

Next steps

0 Wednesday: reasoning ll; Friday: usability;
Monday: UML; Wednesday: TBA

0 A5 and A6

CSE 331 Autumn 2011

32

CSE 331 Autumn 2011

