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Today and 

Wednesday 

Reasoning about code 

 Determine what facts are true during execution – 

we’ve seen these as assertions, representation 

invariants, preconditions, postconditions, etc. 

 x > 0 

 for all nodes n:  n.next.previous == n 

 array a is sorted 

 x + y == z 

 if  x != null then  x.a > x.b 

 These can help… 

 … increase confidence that code is correct 

 … understand why code is incorrect 
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Forward reasoning 

 Given a precondition, what is the postcondition? 

 Example 

// precondition:  x is even 

x = x + 3; 

y = 2x; 

x = 5; 

// postcondition:  ?? 

 One use: rep invariant holds before running code, 

does it still hold after running code? 
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Backward reasoning 

 Given a postcondition, what is the corresponding 

precondition? 

 Example 

// precondition:  ?? 

x = x + 3; 

y = 2x; 

x = 5; 

// postcondition:  y > x 

 Uses include: what is needed to re-establish rep 

invariant, to reproduce a bug, to exploit a bug?  
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Ex: SQL injection attack 

 SQL query constructed using unfiltered user input 
query = “SELECT * FROM users ” 

      + “WHERE name=‘” + userInput + “’;”; 

 If the user inputs a’ or ‘1’=‘1 this results in 
query  SELECT * FROM users 

         WHERE name=‘a’ or ‘1’=‘1’; 

 This query returns information about all users – bad! 

http://xkcd
.com/327/ 
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http://xkcd.com/327/
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Forward vs. backward reasoning 

 Forward reasoning is more intuitive for most people 

 Helps you understand what will happen (simulates the 

code) 

 Introduces facts that may be irrelevant to your task 

 Backward reasoning is usually more helpful 

 Helps you understand what should happen 

 Given a specific task, indicates how to achieve it – for 

example, it can help creating a test case that exposes 

a specific error 
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Reasoning about code statements 

 Convert assertions about programs into logic  

 One logic representation is a Hoare triple: 
P {Java code} Q 

 P and Q are logical assertions about program 

values 

 The triple means “if P is true and you execute code, 

then Q is true afterward”  

 A Hoare triple is a boolean – true or false 

 Or YFPL: Your favorite programming language CSE 331 Autumn 2011 
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Tiny examples 

true 

  {y = x * x} 

y  0 

x  0 

  {y = x * x} 

y > 0 

x > 0 

  {y = x + 1} 

y > 1 

T or F? 

T or F? 

T or F? 

Partial examples 

CSE 331 Autumn 2011 

10 

x = k 

  {if x < 0 x = -x} 

? 

? 

  {x = 3} 

x = 8 

Replace ? with 

what to get 

true 

Replace ? with 

what to get 

true 

Longer example 

x  0 { 

  z = 0; 

  if (x != 0) z = x; else z = z + 1;} 

z > 0 

assert x >= 0;   //  x  0  

z = 0;       //  x  0  z = 0 

if (x != 0) 

  z = x;         //  x > 0  z = x 

else 

  z = z + 1;     //  x = 0  z = 1  

assert z > 0;    // (x > 0  z = x)  

                 // (x = 0  z = 1) 
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Hoare 

triple: 

T or F? 

Reasoning: 

what we 

know after 

each 

program 

point 

 z > 0 

QED 

Strongest or weakest conditions? 

 x = 5 

 {x = x * 2} 

true 

 x = 5 

 {x = x * 2} 

x > 0 

 x = 5 

 {x = x * 2} 

x = 10  x = 5 

 x = 5 

 {x = x * 2} 

x = 10 

 All are true Hoare triples – which 

postcondition is most valuable, and 

why? 

 x = 5  y = 10 

  {z = x/y} 

z < 1 

 x < y  y > 0 

  {z = x/y} 

z < 1 

 y ≠ 0  x / y < 1 

  {z = x/y} 

z < 1 

 All are true Hoare triples – which 

precondition is most valuable, and 

why? 
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Weakest precondition 

 y ≠ 0  x / y < 1 

  {z = x/y} 

z < 1 

(the last one) is the most useful because it allows us to 

invoke the program in the most general condition 

 It is called the weakest precondition, wp(S,Q) of S with 

respect to Q 

 If P {S} Q and for all P’ such that P’ P, then P is 

wp(S,Q)  
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A rule for each language construct 

 The above examples use intuition to discuss the Hoare 

triples 

 Specifically to understand how the code affects the 

 precondition to determine the (strongest) postcondition, 

using forward reasoning 

 postcondition to determine the (weakest) precondition, 

using backward reasoning 

 To replace the intuition with a mechanical transformation – 

needed for precision and for automation – each language 

construct must be explicitly defined using the logic 
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Sequential execution or: 

What does ; really mean? 

 P {S1;S2} Q 

 Compute the intermediate 

assertion 

A = wp(S2,Q) 

 This means that 

P {S1} (A {S2} Q) 

 Compute the assertion 

T = wp(S1,A) 

 This means that 

T {S1} (A {S2} Q) 

 If PT the triple is true  

 We reason backwards to 

compose the statements 

x > 0  

  {y = x*2; 

   z = y/2 

  } 

z > 0 
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x > 0  

  {y = x*2} 

y > 0 

  {z = y/2} 

z > 0 

Conditional execution 

 P {if C S1 else S2} Q 

 Must consider both branches – consider 

 
true 

 { 

  if x >= y 

    z = x; 

  else 

    z = y; 

 } 

z = x  z = y 

 But something is missing – knowledge about the value of the 

condition 
CSE 331 Autumn 2011 

P {if C S1 else S2} Q 

 The precise definition of a conditional (if-then-else) 

statement takes into account the condition’s value 

and both branches 

 (P   C {S1} Q)  

 (P  C {S2} Q) 

 Even though at execution only one branch is taken, 

the proof needs to show that both will satisfy Q 

 Or wp(if C S1; else S2;,Q) is equal to 

Cwp(S1,Q)  Cwp(S2,Q)  

 
CSE 331 Autumn 2011 

17 

Example 

? 
  { 
  if (x < 5)  
      x = x*x;  
  else  
    x = x+1; 
  } 
x  9 

-4 -3 -2 -1 0 7 2 1 4 6 5 3 8 9 
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Cwp(S1,Q)  Cwp(S2,Q)  

 wp(if (x<5) {x = x*x;} else {x = x+1}, x9) 

 (x<5)wp(x=x*x;, x9)    (x5)wp(x=x+1;, x9) 

 (x<5)x*x9       (x5)x+19 

 ((x-3) ∨ (x3  x<5))   x8 
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Assignment statements 

 What does the statement x = E really mean? 

 Q(E) {x = E} Q(x) 

 That is, if we knew something to be true about E 

before the assignment, then we know it to be true 

about x after the assignment 

 Assuming no side-effects 

 wp(x=E;, Q) is Q with x replaced by E 

 

CSE 331 Autumn 2011 

19 

Examples 

Q(E) {x = E} Q(x) 

y > 0 

  {x = y} 

x > 0 
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x > 0  

  {x = x + 1} 

x > 1  

Q(x+1)  x + 1 > 1 

        x > 0 

Q(x)    x > 1 

Q(y)  y > 0 

Q(x)  x > 0 
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More examples 

? 

  {x = y + 5} 

x > 0 

Replace ? with 

what to get 

true 

x = A  y = B 

  { 

    t = x; 

    x = y; 

    y = t; 

  } 

x = B  y = A 

true or false? 

Method calls 

? 

  {x = foo()} 

Q 

 

 If the method has no side effects, it’s just like 

ordinary assignment 

(y = 22  y = -22) 

    {x = Math.abs(y)} 

x = 22 
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With side effects 

 If it has side effects it also needs an assignment to 

every variable in modifies 

 Use the method specification to determine the new 

value 

 

z+1 = 22 

  {incrZ()}  // spec: zpost = zpre + 1 

z = 22 
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Loops: P {while B do S} Q 

 A loop represents an unknown number of paths (and 

recursion presents the same problem as loops 

 Cannot enumerate all paths – this is what makes 

testing and reasoning hard 

 Trying to unroll the loop doesn’t work, since we don’t 

know how many times the loop can execute 

(P   B {S} Q)   

(P  B  {S} Q  B)  

(P  B  {S} Q   B) {S} Q  B  … 



5 

Loop invariant 

 The most common approach to this is to find a loop 

invariant, a predicate that is 

 true each time the loop head is reached (on entry and 

after each iteration)  

 and helps us prove the postcondition of the loop 

 Essentially, we will prove the properties inductively 

 Find a loop invariant I such that 
 P  I    //Invariant is correct on entry 

 B  I {S} I   //Invariant is maintained 

 B  I  Q   //Loop termination proves Q 
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Example 

x  0  y = 0 { 

  while (x != y)  

    y = y + 1; 

x = y 

 

 An invariant that works: LI = x  y 

1. x0  y=0  LI                 

2. LI  x≠y {y = y+1} LI 

3. (LI  (x≠y))   x=y 
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P  I    //Invariant is correct on entry 

B  I {S} I   //Invariant is maintained 

B  I  Q   //Loop termination proves Q 

Example 

n > 0 

  { 

    x = a[1]; 

    i = 2; 

    while i <= n { 

      if a[i] > x 

        x = a[i]; 

      i = i + 1; 

    }  

  } 

x = max(a[1],…,a[n]) 
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Ideas for an 

effective loop 

invariant? 

P  I    //Invariant is correct on entry 

B  I {S} I   //Invariant is maintained 

B  I  Q   //Loop termination proves Q 

Termination 

 Proofs with loop invariants do not guarantee that the 
loop terminates, only that it does produce the proper 
postcondition if it terminates – this is called weak 
correctness 

 A Hoare triple for which termination has been proven is 
strongly correct 

 Proofs of termination are usually performed separately 
from proofs of correctness, and they are usually 
performed through well-founded sets  

 In the max example it’s easy, since i is bounded by n, and 
i increases at each iteration 
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Choosing loop invariants 

 For straightline code, the wp gives us the appropriate 
property 

 For loops, you have to guess the loop invariant and 
then apply the proof techniques 

 If the proof doesn't work 

 Maybe you chose an incorrect or ineffective invariant – 
choose another and try again 

 Maybe the loop is incorrect – gotta fix the code 

 Automatically choosing loop invariants is a research 
topic 
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When to use code proofs for loops 

 Most of your loops need no proofs 

 for (String name : friends) { ... } 

 Write loop invariants and decrementing functions 

when you are unsure about a loop 

 If a loop is not working 

 Add invariant 

 Write code to check them 

 Understand why the code doesn't work 

 Reason to ensure that no similar bugs remain 
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Next steps 
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 Wednesday: reasoning II; Friday: usability; 

Monday: UML; Wednesday: TBA 

 A5 and A6 
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