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Today and 

Wednesday 

Reasoning about code 

 Determine what facts are true during execution – 

we’ve seen these as assertions, representation 

invariants, preconditions, postconditions, etc. 

 x > 0 

 for all nodes n:  n.next.previous == n 

 array a is sorted 

 x + y == z 

 if  x != null then  x.a > x.b 

 These can help… 

 … increase confidence that code is correct 

 … understand why code is incorrect 
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Forward reasoning 

 Given a precondition, what is the postcondition? 

 Example 

// precondition:  x is even 

x = x + 3; 

y = 2x; 

x = 5; 

// postcondition:  ?? 

 One use: rep invariant holds before running code, 

does it still hold after running code? 
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Backward reasoning 

 Given a postcondition, what is the corresponding 

precondition? 

 Example 

// precondition:  ?? 

x = x + 3; 

y = 2x; 

x = 5; 

// postcondition:  y > x 

 Uses include: what is needed to re-establish rep 

invariant, to reproduce a bug, to exploit a bug?  
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Ex: SQL injection attack 

 SQL query constructed using unfiltered user input 
query = “SELECT * FROM users ” 

      + “WHERE name=‘” + userInput + “’;”; 

 If the user inputs a’ or ‘1’=‘1 this results in 
query  SELECT * FROM users 

         WHERE name=‘a’ or ‘1’=‘1’; 

 This query returns information about all users – bad! 

http://xkcd
.com/327/ 
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Forward vs. backward reasoning 

 Forward reasoning is more intuitive for most people 

 Helps you understand what will happen (simulates the 

code) 

 Introduces facts that may be irrelevant to your task 

 Backward reasoning is usually more helpful 

 Helps you understand what should happen 

 Given a specific task, indicates how to achieve it – for 

example, it can help creating a test case that exposes 

a specific error 
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Reasoning about code statements 

 Convert assertions about programs into logic  

 One logic representation is a Hoare triple: 
P {Java code} Q 

 P and Q are logical assertions about program 

values 

 The triple means “if P is true and you execute code, 

then Q is true afterward”  

 A Hoare triple is a boolean – true or false 

 Or YFPL: Your favorite programming language CSE 331 Autumn 2011 
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Tiny examples 

true 

  {y = x * x} 

y  0 

x  0 

  {y = x * x} 

y > 0 

x > 0 

  {y = x + 1} 

y > 1 

T or F? 

T or F? 

T or F? 

Partial examples 
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x = k 

  {if x < 0 x = -x} 

? 

? 

  {x = 3} 

x = 8 

Replace ? with 

what to get 

true 

Replace ? with 

what to get 

true 

Longer example 

x  0 { 

  z = 0; 

  if (x != 0) z = x; else z = z + 1;} 

z > 0 

assert x >= 0;   //  x  0  

z = 0;       //  x  0  z = 0 

if (x != 0) 

  z = x;         //  x > 0  z = x 

else 

  z = z + 1;     //  x = 0  z = 1  

assert z > 0;    // (x > 0  z = x)  

                 // (x = 0  z = 1) 
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Hoare 

triple: 

T or F? 

Reasoning: 

what we 

know after 

each 

program 

point 

 z > 0 

QED 

Strongest or weakest conditions? 

 x = 5 

 {x = x * 2} 

true 

 x = 5 

 {x = x * 2} 

x > 0 

 x = 5 

 {x = x * 2} 

x = 10  x = 5 

 x = 5 

 {x = x * 2} 

x = 10 

 All are true Hoare triples – which 

postcondition is most valuable, and 

why? 

 x = 5  y = 10 

  {z = x/y} 

z < 1 

 x < y  y > 0 

  {z = x/y} 

z < 1 

 y ≠ 0  x / y < 1 

  {z = x/y} 

z < 1 

 All are true Hoare triples – which 

precondition is most valuable, and 

why? 
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Weakest precondition 

 y ≠ 0  x / y < 1 

  {z = x/y} 

z < 1 

(the last one) is the most useful because it allows us to 

invoke the program in the most general condition 

 It is called the weakest precondition, wp(S,Q) of S with 

respect to Q 

 If P {S} Q and for all P’ such that P’ P, then P is 

wp(S,Q)  
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A rule for each language construct 

 The above examples use intuition to discuss the Hoare 

triples 

 Specifically to understand how the code affects the 

 precondition to determine the (strongest) postcondition, 

using forward reasoning 

 postcondition to determine the (weakest) precondition, 

using backward reasoning 

 To replace the intuition with a mechanical transformation – 

needed for precision and for automation – each language 

construct must be explicitly defined using the logic 
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Sequential execution or: 

What does ; really mean? 

 P {S1;S2} Q 

 Compute the intermediate 

assertion 

A = wp(S2,Q) 

 This means that 

P {S1} (A {S2} Q) 

 Compute the assertion 

T = wp(S1,A) 

 This means that 

T {S1} (A {S2} Q) 

 If PT the triple is true  

 We reason backwards to 

compose the statements 

x > 0  

  {y = x*2; 

   z = y/2 

  } 

z > 0 
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x > 0  

  {y = x*2} 

y > 0 

  {z = y/2} 

z > 0 

Conditional execution 

 P {if C S1 else S2} Q 

 Must consider both branches – consider 

 
true 

 { 

  if x >= y 

    z = x; 

  else 

    z = y; 

 } 

z = x  z = y 

 But something is missing – knowledge about the value of the 

condition 
CSE 331 Autumn 2011 

P {if C S1 else S2} Q 

 The precise definition of a conditional (if-then-else) 

statement takes into account the condition’s value 

and both branches 

 (P   C {S1} Q)  

 (P  C {S2} Q) 

 Even though at execution only one branch is taken, 

the proof needs to show that both will satisfy Q 

 Or wp(if C S1; else S2;,Q) is equal to 

Cwp(S1,Q)  Cwp(S2,Q)  
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Example 

? 
  { 
  if (x < 5)  
      x = x*x;  
  else  
    x = x+1; 
  } 
x  9 

-4 -3 -2 -1 0 7 2 1 4 6 5 3 8 9 
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Cwp(S1,Q)  Cwp(S2,Q)  

 wp(if (x<5) {x = x*x;} else {x = x+1}, x9) 

 (x<5)wp(x=x*x;, x9)    (x5)wp(x=x+1;, x9) 

 (x<5)x*x9       (x5)x+19 

 ((x-3) ∨ (x3  x<5))   x8 
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Assignment statements 

 What does the statement x = E really mean? 

 Q(E) {x = E} Q(x) 

 That is, if we knew something to be true about E 

before the assignment, then we know it to be true 

about x after the assignment 

 Assuming no side-effects 

 wp(x=E;, Q) is Q with x replaced by E 

 

CSE 331 Autumn 2011 

19 

Examples 

Q(E) {x = E} Q(x) 

y > 0 

  {x = y} 

x > 0 
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x > 0  

  {x = x + 1} 

x > 1  

Q(x+1)  x + 1 > 1 

        x > 0 

Q(x)    x > 1 

Q(y)  y > 0 

Q(x)  x > 0 
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More examples 

? 

  {x = y + 5} 

x > 0 

Replace ? with 

what to get 

true 

x = A  y = B 

  { 

    t = x; 

    x = y; 

    y = t; 

  } 

x = B  y = A 

true or false? 

Method calls 

? 

  {x = foo()} 

Q 

 

 If the method has no side effects, it’s just like 

ordinary assignment 

(y = 22  y = -22) 

    {x = Math.abs(y)} 

x = 22 
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With side effects 

 If it has side effects it also needs an assignment to 

every variable in modifies 

 Use the method specification to determine the new 

value 

 

z+1 = 22 

  {incrZ()}  // spec: zpost = zpre + 1 

z = 22 
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Loops: P {while B do S} Q 

 A loop represents an unknown number of paths (and 

recursion presents the same problem as loops 

 Cannot enumerate all paths – this is what makes 

testing and reasoning hard 

 Trying to unroll the loop doesn’t work, since we don’t 

know how many times the loop can execute 

(P   B {S} Q)   

(P  B  {S} Q  B)  

(P  B  {S} Q   B) {S} Q  B  … 
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Loop invariant 

 The most common approach to this is to find a loop 

invariant, a predicate that is 

 true each time the loop head is reached (on entry and 

after each iteration)  

 and helps us prove the postcondition of the loop 

 Essentially, we will prove the properties inductively 

 Find a loop invariant I such that 
 P  I    //Invariant is correct on entry 

 B  I {S} I   //Invariant is maintained 

 B  I  Q   //Loop termination proves Q 

CSE 331 Autumn 2011 

25 

Example 

x  0  y = 0 { 

  while (x != y)  

    y = y + 1; 

x = y 

 

 An invariant that works: LI = x  y 

1. x0  y=0  LI                 

2. LI  x≠y {y = y+1} LI 

3. (LI  (x≠y))   x=y 
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P  I    //Invariant is correct on entry 

B  I {S} I   //Invariant is maintained 

B  I  Q   //Loop termination proves Q 

Example 

n > 0 

  { 

    x = a[1]; 

    i = 2; 

    while i <= n { 

      if a[i] > x 

        x = a[i]; 

      i = i + 1; 

    }  

  } 

x = max(a[1],…,a[n]) 
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Ideas for an 

effective loop 

invariant? 

P  I    //Invariant is correct on entry 

B  I {S} I   //Invariant is maintained 

B  I  Q   //Loop termination proves Q 

Termination 

 Proofs with loop invariants do not guarantee that the 
loop terminates, only that it does produce the proper 
postcondition if it terminates – this is called weak 
correctness 

 A Hoare triple for which termination has been proven is 
strongly correct 

 Proofs of termination are usually performed separately 
from proofs of correctness, and they are usually 
performed through well-founded sets  

 In the max example it’s easy, since i is bounded by n, and 
i increases at each iteration 
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Choosing loop invariants 

 For straightline code, the wp gives us the appropriate 
property 

 For loops, you have to guess the loop invariant and 
then apply the proof techniques 

 If the proof doesn't work 

 Maybe you chose an incorrect or ineffective invariant – 
choose another and try again 

 Maybe the loop is incorrect – gotta fix the code 

 Automatically choosing loop invariants is a research 
topic 
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When to use code proofs for loops 

 Most of your loops need no proofs 

 for (String name : friends) { ... } 

 Write loop invariants and decrementing functions 

when you are unsure about a loop 

 If a loop is not working 

 Add invariant 

 Write code to check them 

 Understand why the code doesn't work 

 Reason to ensure that no similar bugs remain 
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Next steps 
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 Wednesday: reasoning II; Friday: usability; 

Monday: UML; Wednesday: TBA 

 A5 and A6 
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