
1

CSE 331

SOFTWARE DESIGN &

IMPLEMENTATION

REASONING I

Autumn 2011

From last lecture

CSE 331 Autumn 2011

2

Today and

Wednesday

Reasoning about code

 Determine what facts are true during execution –

we’ve seen these as assertions, representation

invariants, preconditions, postconditions, etc.

 x > 0

 for all nodes n: n.next.previous == n

 array a is sorted

 x + y == z

 if x != null then x.a > x.b

 These can help…

 … increase confidence that code is correct

 … understand why code is incorrect

CSE 331 Autumn 2011

3

Forward reasoning

 Given a precondition, what is the postcondition?

 Example

// precondition: x is even

x = x + 3;

y = 2x;

x = 5;

// postcondition: ??

 One use: rep invariant holds before running code,

does it still hold after running code?

CSE 331 Autumn 2011

4

Backward reasoning

 Given a postcondition, what is the corresponding

precondition?

 Example

// precondition: ??

x = x + 3;

y = 2x;

x = 5;

// postcondition: y > x

 Uses include: what is needed to re-establish rep

invariant, to reproduce a bug, to exploit a bug?

CSE 331 Autumn 2011

5

Ex: SQL injection attack

 SQL query constructed using unfiltered user input
query = “SELECT * FROM users ”

 + “WHERE name=‘” + userInput + “’;”;

 If the user inputs a’ or ‘1’=‘1 this results in
query  SELECT * FROM users

 WHERE name=‘a’ or ‘1’=‘1’;

 This query returns information about all users – bad!

http://xkcd
.com/327/

6

http://xkcd.com/327/

2

Forward vs. backward reasoning

 Forward reasoning is more intuitive for most people

 Helps you understand what will happen (simulates the

code)

 Introduces facts that may be irrelevant to your task

 Backward reasoning is usually more helpful

 Helps you understand what should happen

 Given a specific task, indicates how to achieve it – for

example, it can help creating a test case that exposes

a specific error

CSE 331 Autumn 2011

7

Reasoning about code statements

 Convert assertions about programs into logic

 One logic representation is a Hoare triple:
P {Java code} Q

 P and Q are logical assertions about program

values

 The triple means “if P is true and you execute code,

then Q is true afterward”

 A Hoare triple is a boolean – true or false

 Or YFPL: Your favorite programming language CSE 331 Autumn 2011

8

CSE 331 Autumn 2011

9

Tiny examples

true

 {y = x * x}

y  0

x  0

 {y = x * x}

y > 0

x > 0

 {y = x + 1}

y > 1

T or F?

T or F?

T or F?

Partial examples

CSE 331 Autumn 2011

10

x = k

 {if x < 0 x = -x}

?

?

 {x = 3}

x = 8

Replace ? with

what to get

true

Replace ? with

what to get

true

Longer example

x  0 {

 z = 0;

 if (x != 0) z = x; else z = z + 1;}

z > 0

assert x >= 0; // x  0

z = 0; // x  0  z = 0

if (x != 0)

 z = x; // x > 0  z = x

else

 z = z + 1; // x = 0  z = 1

assert z > 0; // (x > 0  z = x) 

 // (x = 0  z = 1)

CSE 331 Autumn 2011

11

Hoare

triple:

T or F?

Reasoning:

what we

know after

each

program

point

 z > 0

QED

Strongest or weakest conditions?

 x = 5

 {x = x * 2}

true

 x = 5

 {x = x * 2}

x > 0

 x = 5

 {x = x * 2}

x = 10  x = 5

 x = 5

 {x = x * 2}

x = 10

 All are true Hoare triples – which

postcondition is most valuable, and

why?

 x = 5  y = 10

 {z = x/y}

z < 1

 x < y  y > 0

 {z = x/y}

z < 1

 y ≠ 0  x / y < 1

 {z = x/y}

z < 1

 All are true Hoare triples – which

precondition is most valuable, and

why?

CSE 331 Autumn 2011

12

3

Weakest precondition

 y ≠ 0  x / y < 1

 {z = x/y}

z < 1

(the last one) is the most useful because it allows us to

invoke the program in the most general condition

 It is called the weakest precondition, wp(S,Q) of S with

respect to Q

 If P {S} Q and for all P’ such that P’ P, then P is

wp(S,Q)

CSE 331 Autumn 2011

13

A rule for each language construct

 The above examples use intuition to discuss the Hoare

triples

 Specifically to understand how the code affects the

 precondition to determine the (strongest) postcondition,

using forward reasoning

 postcondition to determine the (weakest) precondition,

using backward reasoning

 To replace the intuition with a mechanical transformation –

needed for precision and for automation – each language

construct must be explicitly defined using the logic

CSE 331 Autumn 2011

14

Sequential execution or:

What does ; really mean?

 P {S1;S2} Q

 Compute the intermediate

assertion

A = wp(S2,Q)

 This means that

P {S1} (A {S2} Q)

 Compute the assertion

T = wp(S1,A)

 This means that

T {S1} (A {S2} Q)

 If PT the triple is true

 We reason backwards to

compose the statements

x > 0

 {y = x*2;

 z = y/2

 }

z > 0

CSE 331 Autumn 2011 15

x > 0

 {y = x*2}

y > 0

 {z = y/2}

z > 0

Conditional execution

 P {if C S1 else S2} Q

 Must consider both branches – consider

true

 {

 if x >= y

 z = x;

 else

 z = y;

 }

z = x  z = y

 But something is missing – knowledge about the value of the

condition
CSE 331 Autumn 2011

P {if C S1 else S2} Q

 The precise definition of a conditional (if-then-else)

statement takes into account the condition’s value

and both branches

 (P  C {S1} Q) 

 (P  C {S2} Q)

 Even though at execution only one branch is taken,

the proof needs to show that both will satisfy Q

 Or wp(if C S1; else S2;,Q) is equal to

Cwp(S1,Q)  Cwp(S2,Q)

CSE 331 Autumn 2011

17

Example

?
 {
 if (x < 5)
 x = x*x;
 else
 x = x+1;
 }
x  9

-4 -3 -2 -1 0 7 2 1 4 6 5 3 8 9
CSE 331 Autumn 2011

18

Cwp(S1,Q)  Cwp(S2,Q)

 wp(if (x<5) {x = x*x;} else {x = x+1}, x9)

 (x<5)wp(x=x*x;, x9)  (x5)wp(x=x+1;, x9)

 (x<5)x*x9  (x5)x+19

 ((x-3) ∨ (x3  x<5))  x8

4

Assignment statements

 What does the statement x = E really mean?

 Q(E) {x = E} Q(x)

 That is, if we knew something to be true about E

before the assignment, then we know it to be true

about x after the assignment

 Assuming no side-effects

 wp(x=E;, Q) is Q with x replaced by E

CSE 331 Autumn 2011

19

Examples

Q(E) {x = E} Q(x)

y > 0

 {x = y}

x > 0

CSE 331 Autumn 2011

20

x > 0

 {x = x + 1}

x > 1

Q(x+1)  x + 1 > 1

  x > 0

Q(x)  x > 1

Q(y)  y > 0

Q(x)  x > 0

CSE 331 Autumn 2011

21

More examples

?

 {x = y + 5}

x > 0

Replace ? with

what to get

true

x = A  y = B

 {

 t = x;

 x = y;

 y = t;

 }

x = B  y = A

true or false?

Method calls

?

 {x = foo()}

Q

 If the method has no side effects, it’s just like

ordinary assignment

(y = 22  y = -22)

 {x = Math.abs(y)}

x = 22

CSE 331 Autumn 2011

22

With side effects

 If it has side effects it also needs an assignment to

every variable in modifies

 Use the method specification to determine the new

value

z+1 = 22

 {incrZ()} // spec: zpost = zpre + 1

z = 22

CSE 331 Autumn 2011

23

CSE 331 Autumn 2011

24

Loops: P {while B do S} Q

 A loop represents an unknown number of paths (and

recursion presents the same problem as loops

 Cannot enumerate all paths – this is what makes

testing and reasoning hard

 Trying to unroll the loop doesn’t work, since we don’t

know how many times the loop can execute

(P   B {S} Q) 

(P  B {S} Q  B) 

(P  B {S} Q  B) {S} Q  B  …

5

Loop invariant

 The most common approach to this is to find a loop

invariant, a predicate that is

 true each time the loop head is reached (on entry and

after each iteration)

 and helps us prove the postcondition of the loop

 Essentially, we will prove the properties inductively

 Find a loop invariant I such that
 P  I //Invariant is correct on entry

 B  I {S} I //Invariant is maintained

 B  I  Q //Loop termination proves Q

CSE 331 Autumn 2011

25

Example

x  0  y = 0 {

 while (x != y)

 y = y + 1;

x = y

 An invariant that works: LI = x  y

1. x0  y=0  LI

2. LI  x≠y {y = y+1} LI

3. (LI  (x≠y))  x=y

CSE 331 Autumn 2011

26

P  I //Invariant is correct on entry

B  I {S} I //Invariant is maintained

B  I  Q //Loop termination proves Q

Example

n > 0

 {

 x = a[1];

 i = 2;

 while i <= n {

 if a[i] > x

 x = a[i];

 i = i + 1;

 }

 }

x = max(a[1],…,a[n])

CSE 331 Autumn 2011

27

Ideas for an

effective loop

invariant?

P  I //Invariant is correct on entry

B  I {S} I //Invariant is maintained

B  I  Q //Loop termination proves Q

Termination

 Proofs with loop invariants do not guarantee that the
loop terminates, only that it does produce the proper
postcondition if it terminates – this is called weak
correctness

 A Hoare triple for which termination has been proven is
strongly correct

 Proofs of termination are usually performed separately
from proofs of correctness, and they are usually
performed through well-founded sets

 In the max example it’s easy, since i is bounded by n, and
i increases at each iteration

CSE 331 Autumn 2011

28

Choosing loop invariants

 For straightline code, the wp gives us the appropriate
property

 For loops, you have to guess the loop invariant and
then apply the proof techniques

 If the proof doesn't work

 Maybe you chose an incorrect or ineffective invariant –
choose another and try again

 Maybe the loop is incorrect – gotta fix the code

 Automatically choosing loop invariants is a research
topic

CSE 331 Autumn 2011

29

When to use code proofs for loops

 Most of your loops need no proofs

 for (String name : friends) { ... }

 Write loop invariants and decrementing functions

when you are unsure about a loop

 If a loop is not working

 Add invariant

 Write code to check them

 Understand why the code doesn't work

 Reason to ensure that no similar bugs remain

CSE 331 Autumn 2011

30

6

Next steps

CSE 331 Autumn 2011

31

 Wednesday: reasoning II; Friday: usability;

Monday: UML; Wednesday: TBA

 A5 and A6

CSE 331 Autumn 2011 32

