
1

CSE 331

SOFTWARE DESIGN &

IMPLEMENTATION

REASONING I

Autumn 2011

Proofs in the ADT world

 Prove that the system does what you want

 Verify that rep invariant is satisfied

 Verify that the implementation satisfies the spec

 Verify that client code behaves correctly – assuming

that the implementation is correct

 Proof can be formal or informal

 Complementary to testing

Rep invariant

 Prove that all objects of the type satisfy the rep

invariant

 Sometimes easier than testing, sometimes harder

 Every good programmer uses it as appropriate

 The follow techniques are used more broadly than

for proving rep invariants – many proofs about

programs have this flavor

All possible instances of a type

 Make a new object

 constructors

 producers

 Modify an existing object

 mutators

 observers, producers

 Limited number of operations, but infinitely many

objects

 Maybe infinitely many values as well

Examples of making objects

d = a.observer() c = a.mutator() b = producer(a)

a = constructor()

g = b.observer() f = b.mutator() e = producer(b)

 Infinitely many possibilities

We cannot perform a proof that considers each possibility case-by-case

Solution: induction

 Induction: prove infinitely many facts using a finite
proof

 For constructors (“basis step”)

 Prove the property holds on exit

 For all other methods (“inductive step”)

 Prove that if the property holds on entry, then it holds on
exit

 If the basis and inductive steps are true

 There is no way to make an object for which the property
does not hold – therefore, the property holds for all
objects

2

A counter class

// spec field: count

// abstract invariant: count ≥ 0

class Counter {

 // counts up starting from 0

 Counter();

 // returns a copy of this counter

 Counter clone();

 // increments the value that this represents:

 // countpost = countpre + 1

 void increment();

 // returns count

 BigInteger getValue();

}

 Is the abstract invariant satisfied by these method specs?

Inductive proof

 Base case: invariant is satisfied by constructor

 Inductive case

 If invariant is satisfied on entry to clone,

then invariant is satisfied on exit

 If invariant is satisfied on entry to increment,

then invariant is satisfied on exit

 If invariant is satisfied on entry to getValue,

then invariant is satisfied on exit

 Conclusion: invariant is always satisfied

Inductive proof that x+1 > x

 ADT: the natural numbers (non-negative integers)

 constructor: 0 // zero

 producer: succ //successor: succ(x) = x+1

 observers: value

 Axioms

1. succ(0) > 0

2. (succ(i) > succ(j)) i > j

 Goal: prove that for all natural numbers x, succ(x) > x

 Possibilities

 x is 0 is true: succ(0) > 0 by axiom #1

 x is succ(y) for some y

 succ(y) > y by assumption

 succ(succ(y)) > succ(y) by axiom #2

 succ(x) > x by def of x = succ(y)

CharSet abstraction

// Overview: A CharSet is a finite mutable set of chars.

// effects: creates a fresh, empty CharSet

public CharSet ()

// modifies: this

// effects: thispost = thispre U {c}

public void insert (char c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (char c);

// returns: (c this)

public boolean member (char c);

// returns: cardinality of this

public int size ();

Implementation of CharSet

// Rep invariant: elts has no nulls and no duplicates

List<Character> elts;

public CharSet() {

 elts = new ArrayList<Character>();

}

public void delete(char c) {

 elts.remove(new Character (c));

}

public void insert(char c) {

 if (! member(c))

 elts.add(new Character(c));

}

public boolean member(char c) {

 return elts.contains(new Character(c));

}

…

Proof of representation invariant

 Rep invariant: elts has no nulls and no duplicates

 Base case: constructor

public CharSet() {

 elts = new ArrayList<Character>();

}

 This satisfies the rep invariant

 Inductive step: for each other operation:

 Assume rep invariant holds before the operation

 Prove rep invariant holds after the operation

3

Inductive step, member

 Rep invariant: elts has no nulls and no duplicates

public boolean member(char c) {

 return elts.contains(new Character(c));

}

 contains doesn’t change elts, so neither does
member

 Conclusion: rep invariant is preserved

 But why do we even need to check member?

 The specification says that it does not mutate set

 Reasoning must account for all possible arguments; the

specification might be wrong; etc.

Inductive step, delete

 Rep invariant: elts has no nulls and no duplicates
public void delete(char c) {

 elts.remove(new Character(c));

}

 List.remove has two behaviors

 leaves elts unchanged or

 removes an element

 Rep invariant can only be made false by adding

elements

 Conclusion: rep invariant is preserved

Inductive step, insert

 Rep invariant: elts has no nulls and no duplicates
public void insert(char c) {

 if (! this.member(c))

 elts.add(new Character(c));

}

 If c is in eltspre

 elts is unchanged rep invariant is preserved

 If c is not in eltspre

 new element is not null (Character constructor cannot

return null) or a duplicate (insert won’t call

elts.add) rep invariant is preserved

Reasoning about mutations

 Inductive step must consider all possible changes to

the rep

 A possible source of changes: representation exposure

 If the proof does not account for this, then the proof is

invalid

 Basically, representation exposure allows side-effects

on instances of the representation that are not easily

visible

Reasoning about ADT uses

 Induction on specification, not on code

 Abstract values may differ from concrete

representation

 Can ignore observers, since they do not affect

abstract state

 Axioms

 specs of operations

 axioms of types used in overview parts of

specifications

LetterSet (case-insensitive char set)

// LetterSet: mutable finite set of case-insensitive characters

// effects: creates an empty LetterSet

public LetterSet ();

// Insert c if this contains no char with same lower-case rep

// modifies: this

// effects: thispost = if (c1 thispre |

// toLowerCase(c1)=toLowerCase(c))

// then thispre else thispre {c}

public void insert (char c);

// modifies: this

// effects: thispost = thispre - {c}

public void delete (char c);

// returns: (c this)

public boolean member (char c);

// returns: |this|

public int size ();

4

Prove some LetterSet contains two

different letters

 Prove

 |S|>1 (c1,c2 S |
 [toLowerCase(c1) ≠ toLowerCase(c2)])

 How might S have been made?

S
constructor

S
T.insert(c)

T

S
constructor

S = T
T.insert(c)

T

S = T {c}
T.insert(c)

T

Base case

Inductive case #2

Inductive case #1

Full proof: two slides from Ernst

CSE 331 Autumn 2011

20

CSE 331 Autumn 2011

21

Goal: prove that a large enough LetterSet

contains two different letters
Prove: |S| > 1 (c1, c2 S [toLowerCase(c1) toLowerCase(c2)])

Two possibilities for how S was made: by the constructor, or by insert
Base case: S = { }, (S was made by the constructor):

property holds (vacuously true)

Inductive case (S was made by a call of the form “T.insert(c)”):

Assume: |T| > 1 (c3,c4T [toLowerCase(c3) toLowerCase(c4)])

Show: |S| > 1 (c1,c2 S [toLowerCase(c1) toLowerCase(c2)])

 where S = T.insert(c)

 = “if (c5T s.t. toLowerCase(c5) = toLowerCase(c))
 then T else T U {c}”

The value for S came from the specification of insert, applied to T.insert(c):

// modifies: this

// effects: this
post

 = if (c1S s.t. toLowerCase(c1) =
toLowerCase(c))

 then this
pre

 else this
pre

 U {c}
public void insert (char c);

(Inductive case is continued on the next slide.)

Goal: a large enough LetterSet contains two different letters.

Inductive case: S = T.insert(c)

Goal (from previous slide):

Assume: |T| > 1 (c3,c4T [toLowerCase(c3) toLowerCase(c4)])

Show: |S| > 1 (c1, c2S [toLowerCase(c1) toLowerCase(c2)])

 where S = T.insert(c)

 = “if (c5T s.t. toLowerCase(c5) = toLowerCase(c))
 then T else T U {c}”

Consider the two possibilities for S (from “if ... then T else T U {c}”):

1. If S = T, the theorem holds by induction hypothesis

(The assumption above)
2. If S = T U {c}, there are three cases to consider:

– |T| = 0: Vacuous case, since hypothesis of theorem (“|S| > 1”) is false

– |T| ≥ 1: We know that T did not contain a char of toLowerCase(h),

so the theorem holds by the meaning of union

– Bonus: |T| > 1: By inductive assumption, T contains different letters,

so by the meaning of union, T U {c} also contains different letters

Conclusion

 A proof is a powerful mechanism for ensuring

correctness of code

 Formal reasoning is required if debugging is hard

 Inductive proofs are the most effective in computer

science

 Types of proofs

 Verify that rep invariant is satisfied

 Verify that the implementation satisfies the spec

 Verify that client code behaves correctly

5

Next steps

CSE 331 Autumn 2011

25

 Friday: usability; Monday: UML; Wednesday: TBA

 A5 and A6

CSE 331 Autumn 2011 26

