
1 

CSE 331 

SOFTWARE DESIGN & 

IMPLEMENTATION 

REASONING I 

Autumn 2011 

Proofs in the ADT world 

 Prove that the system does what you want 

 Verify that rep invariant is satisfied 

 Verify that the implementation satisfies the spec 

 Verify that client code behaves correctly – assuming 

that the implementation is correct 

 Proof can be formal or informal 

 Complementary to testing 

 

Rep invariant 

 Prove that all objects of the type satisfy the rep 

invariant 

 Sometimes easier than testing, sometimes harder 

 Every good programmer uses it as appropriate 

 

 

 The follow techniques are used more broadly than 

for proving rep invariants – many proofs about 

programs have this flavor 

All possible instances of a type 

 Make a new object 

 constructors 

 producers 

 Modify an existing object 

 mutators 

 observers, producers  

 Limited number of operations, but infinitely many 

objects 

 Maybe infinitely many values as well 

 

Examples of making objects 

d = a.observer() c = a.mutator() b = producer(a) 

a = constructor() 

g = b.observer() f = b.mutator() e = producer(b) 

 Infinitely many possibilities 

We cannot perform a proof that considers each possibility case-by-case 

Solution:  induction 

 Induction:  prove infinitely many facts using a finite 
proof 

 For constructors (“basis step”) 

 Prove the property holds on exit 

 For all other methods (“inductive step”) 

 Prove that if the property holds on entry, then it holds on 
exit 

 If the basis and inductive steps are true 

 There is no way to make an object for which the property 
does not hold – therefore, the property holds for all 
objects 

 



2 

A counter class 

// spec field: count 

// abstract invariant:  count ≥ 0 

class Counter { 

  // counts up starting from 0 

  Counter(); 

  // returns a copy of this counter 

  Counter clone(); 

  // increments the value that this represents: 

  // countpost = countpre + 1 

  void increment(); 

  // returns count 

  BigInteger getValue(); 

} 

 Is the abstract invariant satisfied by these method specs? 

Inductive proof 

 Base case:  invariant is satisfied by constructor 

 Inductive case 

 If invariant is satisfied on entry to clone, 

then invariant is satisfied on exit 

 If invariant is satisfied on entry to increment, 

then invariant is satisfied on exit 

 If invariant is satisfied on entry to getValue, 

then invariant is satisfied on exit 

 Conclusion:  invariant is always satisfied 

Inductive proof that  x+1 > x 

 ADT:  the natural numbers (non-negative integers) 

 constructor:  0 // zero 

 producer:    succ   //successor:  succ(x) = x+1 

 observers:   value 

 Axioms 

1. succ(0) > 0 

2. (succ(i) > succ(j))    i > j 

 Goal:  prove that for all natural numbers x,  succ(x) > x 

 Possibilities 

 x is 0 is true: succ(0) > 0  by axiom #1 

 x is succ(y) for some y 

 succ(y) > y    by assumption  

 succ(succ(y)) > succ(y)  by axiom #2 

 succ(x) > x    by def of x = succ(y) 

 

CharSet abstraction 

// Overview: A CharSet is a finite mutable set of chars. 

// effects: creates a fresh, empty CharSet  

public CharSet ( )  

// modifies: this 

// effects: thispost = thispre U {c} 

public void insert (char c); 

// modifies: this 

// effects: thispost = thispre - {c} 

public void delete (char c); 

// returns: (c  this) 

public boolean member (char c); 

// returns: cardinality of this 

public int size ( ); 

 

Implementation of CharSet 

// Rep invariant:  elts has no nulls and no duplicates 

List<Character> elts; 

 

public CharSet() { 

  elts = new ArrayList<Character>(); 

} 

public void delete(char c) { 

  elts.remove(new Character (c)); 

} 

public void insert(char c) { 

  if (! member(c))  

    elts.add(new Character(c)); 

} 

public boolean member(char c) { 

  return elts.contains(new Character(c)); 

} 

… 

 

Proof of representation invariant 

 Rep invariant:  elts has no nulls and no duplicates 

 Base case:  constructor 

public CharSet() { 

  elts = new ArrayList<Character>(); 

} 

 This satisfies the rep invariant 

 Inductive step: for each other operation: 

 Assume rep invariant holds before the operation 

 Prove rep invariant holds after the operation 

 



3 

Inductive step,  member 

 Rep invariant:  elts has no nulls and no duplicates 

public boolean member(char c) { 

  return elts.contains(new Character(c));  

} 

 contains doesn’t change elts, so neither does 
member 

 Conclusion:  rep invariant is preserved 

 But why do we even need to check member? 

 The specification says that it does not mutate set 

 Reasoning must account for all possible arguments; the 

specification might be wrong; etc. 

Inductive step,  delete 

 Rep invariant:  elts has no nulls and no duplicates 
public void delete(char c) { 

 elts.remove(new Character(c)); 

} 

 List.remove has two behaviors 

 leaves elts unchanged or 

 removes an element 

 Rep invariant can only be made false by adding 

elements 

 Conclusion:  rep invariant is preserved 

 

Inductive step,  insert 

 Rep invariant:  elts has no nulls and no duplicates 
public void insert(char c) { 

  if (! this.member(c)) 

    elts.add(new Character(c)); 

} 

 If c is in eltspre 

 elts is unchanged      rep invariant is preserved 

 If c is not in eltspre 

 new element is not null (Character constructor cannot 

return null) or a duplicate (insert won’t call 

elts.add)     rep invariant is preserved 

Reasoning about mutations 

 Inductive step must consider all possible changes to 

the rep 

 A possible source of changes:  representation exposure 

 If the proof does not account for this, then the proof is 

invalid 

 Basically, representation exposure allows side-effects 

on instances of the representation that are not easily 

visible 

 

Reasoning about ADT uses 

 Induction on specification, not on code 

 Abstract values may differ from concrete 

representation 

 Can ignore observers, since they do not affect 

abstract state 

 Axioms 

 specs of operations 

 axioms of types used in overview parts of 

specifications 

 

LetterSet (case-insensitive char set) 

// LetterSet: mutable finite set of case-insensitive characters 

// effects: creates an empty LetterSet 

public LetterSet ( ); 

// Insert c if this contains no char with same lower-case rep 

// modifies: this 

// effects: thispost = if (c1 thispre | 

//                             toLowerCase(c1)=toLowerCase(c)) 

//                        then thispre else thispre  {c} 

public void insert (char c); 

// modifies: this 

// effects: thispost = thispre - {c} 

public void delete (char c); 

// returns:  (c  this) 

public boolean member (char c); 

// returns:  |this| 

public int size ( ); 



4 

Prove some LetterSet contains two 

different letters 

 Prove 

 |S|>1  (c1,c2 S |  
          [toLowerCase(c1) ≠ toLowerCase(c2)])  

 How might S have been made? 

 

S 
constructor 

S 
T.insert(c) 

T 

S 
constructor 

S = T 
T.insert(c) 

T 

S = T  {c} 
T.insert(c) 

T 

Base case 

Inductive case #2 

Inductive case #1 

Full proof: two slides from Ernst 

 

CSE 331 Autumn 2011 

20 

CSE 331 Autumn 2011 

21 

Goal:  prove that a large enough LetterSet 

contains two different letters 
Prove: |S| > 1  (c1, c2 S [toLowerCase(c1)  toLowerCase(c2)])  

Two possibilities for how S was made:  by the constructor, or by insert 
Base case: S = { }, (S was made by the constructor): 

property holds (vacuously true) 

Inductive case (S was made by a call of the form “T.insert(c)”): 

Assume: |T| > 1  (c3,c4T [toLowerCase(c3)  toLowerCase(c4)]) 

Show: |S| > 1  (c1,c2 S [toLowerCase(c1)  toLowerCase(c2)]) 

     where S = T.insert(c) 

         = “if (c5T s.t. toLowerCase(c5) = toLowerCase(c)) 
                   then T else T U {c}” 

The value for S came from the specification of insert, applied to T.insert(c): 

// modifies:  this 

// effects:  this
post

 = if (c1S s.t. toLowerCase(c1) = 
toLowerCase(c)) 

       then this
pre 

       else this
pre

 U {c} 
public void insert (char c); 

(Inductive case is continued on the next slide.) 

Goal:  a large enough LetterSet contains two different letters. 

Inductive case:  S = T.insert(c) 

Goal (from previous slide): 

Assume: |T| > 1  (c3,c4T [toLowerCase(c3)  toLowerCase(c4)]) 

Show: |S| > 1  (c1, c2S [toLowerCase(c1)  toLowerCase(c2)]) 

     where S = T.insert(c) 

                   = “if (c5T s.t. toLowerCase(c5) = toLowerCase(c))  
                   then T else T U {c}” 

Consider the two possibilities for S (from “if ... then T else T U {c}”): 

1. If S = T, the theorem holds by induction hypothesis 

(The assumption above) 
2. If S = T U {c}, there are three cases to consider: 

– |T| = 0: Vacuous case, since hypothesis of theorem (“|S| > 1”) is false 

– |T| ≥ 1: We know that T did not contain a char of toLowerCase(h), 

so the theorem holds by the meaning of union 

– Bonus:  |T| > 1: By inductive assumption, T contains different letters, 

so by the meaning of union, T U {c} also contains different letters 

Conclusion 

 A proof is a powerful mechanism for ensuring 

correctness of code 

 Formal reasoning is required if debugging is hard 

 Inductive proofs are the most effective in computer 

science 

 Types of proofs 

 Verify that rep invariant is satisfied 

 Verify that the implementation satisfies the spec 

 Verify that client code behaves correctly 



5 

Next steps 

CSE 331 Autumn 2011 

25 

 Friday: usability; Monday: UML; Wednesday: TBA 

 A5 and A6 

CSE 331 Autumn 2011 26 


