CSE 331

SOFTWARE DESIGN &
IMPLEMENTATION
REASONING |

Rep invariant

0 Prove that all objects of the type satisfy the rep
invariant

0 Sometimes easier than testing, sometimes harder

0 Every good programmer uses it as appropriate

0 The follow techniques are used more broadly than
for proving rep invariants — many proofs about
programs have this flavor

Examples of making objects

|
a = constructor()

b = producer(a) ¢ = a.mutator() d ="a.observer()

S T

e = producer(b) = b.mutator() g = b.observer()

7N SN <IN

Q Infinitely many possibilities
0 We cannot perform a proof that considers each possibility case-by-case

Proofs in the ADT world

0 Prove that the system does what you want
Verify that rep invariant is satisfied
Verify that the implementation satisfies the spec
Verify that client code behaves correctly — assuming
that the implementation is correct

1 Proof can be formal or informal

o Complementary to testing

All possible instances of a type

o Make a new object
constructors
producers
1 Modify an existing object
mutators
observers, producers
0 Limited number of operations, but infinitely many
objects

Maybe infinitely many values as well

Solution: induction

o Induction: prove infinitely many facts using a finite
proof

o For constructors (“basis step”)
Prove the property holds on exit

o For all other methods (“inductive step”)
Prove that if the property holds on entry, then it holds on
exit

0 If the basis and inductive steps are true

There is no way to make an object for which the property
does not hold — therefore, the property holds for all
objects

A counter class

// spec field: count
// abstract invariant: count 2 0
class Counter {
// counts up starting from 0
Counter () ;
// returns a copy of this counter
Counter clone();
// increments the value that this represents:
// count,, = count,, + 1
void increment() ;
// returns count
BigInteger getValue();

Is the abstract invariant satisfied by these method specs?

Inductive proof

Base case: invariant is satisfied by constructor

Inductive case
If invariant is satisfied on entry to clone,
then invariant is satisfied on exit
If invariant is satisfied on entry to increment,
then invariant is satisfied on exit
If invariant is satisfied on entry to getValue,
then invariant is satisfied on exit

Conclusion: invariant is always satisfied

Inductive proof that x+1 > x

ADT: the natural numbers (non-negative integers)
constructor: 0 // zero
producer: succ //successor: succ (x) = x+1
observers: value
Axioms
succ(0) > 0
(succ(i) > succ(j)) & i> 3
Goal: prove that for all natural numbers x, succ(x) > x

Possibilities
x is 0 is frue: succ (0) > 0 by axiom #1
x is succ(y) for some y
succ(y) >y by assumption
succ (succ(y)) > succ(y) by axiom #2
succ(x) > x by def of x = succ(y)

CharSet abstraction

// Overview: A CharSet is a finite mutable set of chars.
// effects: creates a fresh, empty CharSet
public CharSet ()

// modifies: this

// effects: this,,, = this,, U {c}

public void insert (char c);

// modifies: this

// effects: this,,, = this,, - {c}

public void delete (char c);

// returns: (c [J this)

public boolean member (char c);

// returns: cardinality of this

public int size ();

Implementation of CharSet

// Rep invariant: elts has no nulls and no duplicates
List<Character> elts;

public CharSet() {
elts = new ArrayList<Character>();
}
public void delete(char c) {
elts.remove (new Character (c));
}
public void insert(char c) {
if (! member(c))
elts.add(new Character(c));

}
public boolean member (char c) {
return elts.contains (new Character(c));

}

Proof of representation invariant

Rep invariant: elts has no nulls and no duplicates

Base case: constructor
public CharSet() {
elts = new ArrayList<Character>() ;
}
This satisfies the rep invariant
Inductive step: for each other operation:
Assume rep invariant holds before the operation

Prove rep invariant holds after the operation

Inductive step, member

Rep invariant: elts has no nulls and no duplicates
public boolean member (char c) {
return elts.contains (new Character(c));

}

contains doesn’t change elts, so neither does
member

Conclusion: rep invariant is preserved
But why do we even need to check member?
The specification says that it does not mutate set

Reasoning must account for all possible arguments; the
specification might be wrong; etc.

Inductive step, delete

Rep invariant: elts has no nulls and no duplicates
public void delete(char c) {
elts.remove (new Character(c));

}
List.remove has two behaviors
leaves elts unchanged or
removes an element
Rep invariant can only be made false by adding
elements

Conclusion: rep invariant is preserved

Inductive step, insert

Rep invariant: elts has no nulls and no duplicates
public void insert(char c) {
if (! this.member (c)
elts.add(new Character(c));
}
If cisinelts,,

elts is unchanged = rep invariant is preserved

If cis not in elts,,,

new element is not null (Character constructor cannot
return null) or a duplicate (insert won't call
elts.add) = rep invariant is preserved

Reasoning about mutations

Inductive step must consider all possible changes to
the rep
A possible source of changes: representation exposure
If the proof does not account for this, then the proof is
invalid
Basically, representation exposure allows side-effects
on instances of the representation that are not easily
visible

Reasoning about ADT uses

Induction on specification, not on code
Abstract values may differ from concrete
representation
Can ignore observers, since they do not affect
abstract state
Axioms

specs of operations

axioms of types used in overview parts of
specifications

LetterSet (case-insensitive char set)

// LetterSet: mutable finite set of case-insensitive characters
// effects: creates an empty LetterSet

public LetterSet ();

// Insert c if this contains no char with same lower-case rep
// modifies: this

// effects: this,,, = if (3Jc,€ this,, |

// toLowerCase (c;) =toLowerCase (c))
/7 then this,, else this,, U {c}
public void insert (char c);

// modifies: this

// effects: this,,, = this,, - {c}

public void delete (char c);

// returns: (c € this)
public boolean member (char c);
// returns: |this|

public int size ();

Prove some LetterSet contains two
different letters

o Prove

1S1>1 = (3c,,c, €8 |
[toLowerCase(c;) # toLowerCase(c,)])

o How might S have been made?

constructor s constructor. s Base case

Inductive case #1

T T.insert(c s T Tinsert(c s=T

Inductive case #2

T T.insert(c S=TU

Goal: alarge enough LetterSet contains two different letters,
Inductive case: S = T.insert(c)

Goal (from previous slide):
Assume: |T|> 1 = (Zca,c4=T [toLowerCasel(cs) = toLowerCase(c,)])
Show: |S| > 1 = (J¢y. ¢2=S [toLowerCase(c,) = toLowerCase(c,)])
where S = T.insert(c)
="if (Jos=T s.t. toLowerCase(cs) = toLowerCase(c))
then Telse TU {c}"
Consider the two possibilities for S (from “if ... then T else T U {c}"):
1. If S =T, the theorem holds by induction hypothesis
(The assumption above)
2. If S =T U {c}, there are three cases to consider:
— |T|=0: Vacuous case, since hypothesis of theorem (*|S| > 17} is false
- |T|2 1: We know that T did not contain a char of tolL.owerCase(h),
so the theorem holds by the meaning of union
— Bonus: [T| > 1: By inductive assumption, T contains different letters,
so by the meaning of union, T U {c} also contains different letters

Goal: a large enough LetterSet contains two different letters.
Inductive case: S = T.insert(c)

Goal (from previous slide):
Assume: |T| > 1 = (3c;,c4€T [toLowerCase(cs) # toLowerCase(c,)])
Show: |S| > 1 = (3¢, ¢c,&S [toLowerCase(c,) # toLowerCase(c,)])
where S = T.insert(c)
="if (3cs€T s.t. toLowerCase(cs) = toLowerCase(c))
then T else TU {c}"
Consider the two possibilities for S (from “if ... then T else T U {c}"):
1. If S =T, the theorem holds by induction hypothesis
(The assumption above)
2. IfS=TU ({c}, there are three cases to consider:
— |T| = 0: Vacuous case, since hypothesis of theorem (“|S| > 17) is false
— |T| 2 1: We know that T did not contain a char of toLowerCase(h),
so the theorem holds by the meaning of union
— Bonus: |T| > 1: By inductive assumption, T contains different letters,
so by the meaning of union, T U {c} also contains different letters

Full proof: two slides from Ernst

Goal: prove that a large enough LetterSet
contains two different letters

Prove: |S| > 1 = (3¢, ¢, =S [toLowerCase(c,) = toLowerCase(c,)])
Two possibilities for how S was made: by the constructor, or by insert
Base case: S ={}, (S was made by the constructor)
property holds (vacuously true}
Inductive case (S was made by a call of the form “T.insert(c)"):
Assume: [T > 1 = (Jes,¢,=T [toLowerCase(cs) = toLowerCase(c,)])
Show: |S| > 1= (F¢,,6; =S [toLowerCase(c,) = toLowerCass(c,)])
where § = Tinsert(c)
="if (3= T 5.t. toLowerCase(cs) = toLowerCase(c))
then Telse TU {c}"
The value for S came from the specification of insert, applied to T.insert(c):
/I modifies: this
Il effects: this,,,, = if (%, S s.t. toLowerCase(c,) = toL owerCase(c))
then this,,,
elsethis,, U {c}
public void insert (char c);
(Inductive case is continued on the next slide.)

Goal: prove that a large enough LetterSet

ntains two different letters
Prove: |S|>1 = (3c;, ¢, €S [toLowerCase(c,) # toLowerCase(c,)])
Two possibilities for how S was made: by the constructor, or by insert
Base case: S ={}, (S was made by the constructor):
property holds (vacuously true)
Inductive case (S was made by a call of the form “T.insert(c)"):
Assume: |T| > 1 = (3c,,c,eT [toLowerCase(c,) = toLowerCase(c,)])
Show: |S| > 1 = (3c,,c, €S [toLowerCase(c,) = toLowerCase(c,)])
where S = T.insert(c)
=“if (3cseT s.t. toLowerCase(cs) = toLowerCase(c))
then T else TU {c}"
The value for S came from the specification of insert, applied to T.insert(c):
/I modifies: this
Il effects: this_, = if (3¢, €S s.t. toLowerCase(c,) =
to LowerCagetC))
then th.|sp,e
else this,, U {c}
public void insert (char c);
(Inductive case is continued on the next slide.)

Conclusion

0 A proof is a powerful mechanism for ensuring
correctness of code
01 Formal reasoning is required if debugging is hard
0 Inductive proofs are the most effective in computer
science
0 Types of proofs
Verify that rep invariant is satisfied
Verify that the implementation satisfies the spec

Verify that client code behaves correctly

Next steps

o Friday: usability; Monday: UML; Wednesday: TBA

0 A5 and A6

CSE 331 Autumn 2011

26

CSE 331 Autumn 2011

