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Proofs in the ADT world 

 Prove that the system does what you want 

 Verify that rep invariant is satisfied 

 Verify that the implementation satisfies the spec 

 Verify that client code behaves correctly – assuming 

that the implementation is correct 

 Proof can be formal or informal 

 Complementary to testing 

 

Rep invariant 

 Prove that all objects of the type satisfy the rep 

invariant 

 Sometimes easier than testing, sometimes harder 

 Every good programmer uses it as appropriate 

 

 

 The follow techniques are used more broadly than 

for proving rep invariants – many proofs about 

programs have this flavor 

All possible instances of a type 

 Make a new object 

 constructors 

 producers 

 Modify an existing object 

 mutators 

 observers, producers  

 Limited number of operations, but infinitely many 

objects 

 Maybe infinitely many values as well 

 

Examples of making objects 

d = a.observer() c = a.mutator() b = producer(a) 

a = constructor() 

g = b.observer() f = b.mutator() e = producer(b) 

 Infinitely many possibilities 

We cannot perform a proof that considers each possibility case-by-case 

Solution:  induction 

 Induction:  prove infinitely many facts using a finite 
proof 

 For constructors (“basis step”) 

 Prove the property holds on exit 

 For all other methods (“inductive step”) 

 Prove that if the property holds on entry, then it holds on 
exit 

 If the basis and inductive steps are true 

 There is no way to make an object for which the property 
does not hold – therefore, the property holds for all 
objects 
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A counter class 

// spec field: count 

// abstract invariant:  count ≥ 0 

class Counter { 

  // counts up starting from 0 

  Counter(); 

  // returns a copy of this counter 

  Counter clone(); 

  // increments the value that this represents: 

  // countpost = countpre + 1 

  void increment(); 

  // returns count 

  BigInteger getValue(); 

} 

 Is the abstract invariant satisfied by these method specs? 

Inductive proof 

 Base case:  invariant is satisfied by constructor 

 Inductive case 

 If invariant is satisfied on entry to clone, 

then invariant is satisfied on exit 

 If invariant is satisfied on entry to increment, 

then invariant is satisfied on exit 

 If invariant is satisfied on entry to getValue, 

then invariant is satisfied on exit 

 Conclusion:  invariant is always satisfied 

Inductive proof that  x+1 > x 

 ADT:  the natural numbers (non-negative integers) 

 constructor:  0 // zero 

 producer:    succ   //successor:  succ(x) = x+1 

 observers:   value 

 Axioms 

1. succ(0) > 0 

2. (succ(i) > succ(j))    i > j 

 Goal:  prove that for all natural numbers x,  succ(x) > x 

 Possibilities 

 x is 0 is true: succ(0) > 0  by axiom #1 

 x is succ(y) for some y 

 succ(y) > y    by assumption  

 succ(succ(y)) > succ(y)  by axiom #2 

 succ(x) > x    by def of x = succ(y) 

 

CharSet abstraction 

// Overview: A CharSet is a finite mutable set of chars. 

// effects: creates a fresh, empty CharSet  

public CharSet ( )  

// modifies: this 

// effects: thispost = thispre U {c} 

public void insert (char c); 

// modifies: this 

// effects: thispost = thispre - {c} 

public void delete (char c); 

// returns: (c  this) 

public boolean member (char c); 

// returns: cardinality of this 

public int size ( ); 

 

Implementation of CharSet 

// Rep invariant:  elts has no nulls and no duplicates 

List<Character> elts; 

 

public CharSet() { 

  elts = new ArrayList<Character>(); 

} 

public void delete(char c) { 

  elts.remove(new Character (c)); 

} 

public void insert(char c) { 

  if (! member(c))  

    elts.add(new Character(c)); 

} 

public boolean member(char c) { 

  return elts.contains(new Character(c)); 

} 

… 

 

Proof of representation invariant 

 Rep invariant:  elts has no nulls and no duplicates 

 Base case:  constructor 

public CharSet() { 

  elts = new ArrayList<Character>(); 

} 

 This satisfies the rep invariant 

 Inductive step: for each other operation: 

 Assume rep invariant holds before the operation 

 Prove rep invariant holds after the operation 
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Inductive step,  member 

 Rep invariant:  elts has no nulls and no duplicates 

public boolean member(char c) { 

  return elts.contains(new Character(c));  

} 

 contains doesn’t change elts, so neither does 
member 

 Conclusion:  rep invariant is preserved 

 But why do we even need to check member? 

 The specification says that it does not mutate set 

 Reasoning must account for all possible arguments; the 

specification might be wrong; etc. 

Inductive step,  delete 

 Rep invariant:  elts has no nulls and no duplicates 
public void delete(char c) { 

 elts.remove(new Character(c)); 

} 

 List.remove has two behaviors 

 leaves elts unchanged or 

 removes an element 

 Rep invariant can only be made false by adding 

elements 

 Conclusion:  rep invariant is preserved 

 

Inductive step,  insert 

 Rep invariant:  elts has no nulls and no duplicates 
public void insert(char c) { 

  if (! this.member(c)) 

    elts.add(new Character(c)); 

} 

 If c is in eltspre 

 elts is unchanged      rep invariant is preserved 

 If c is not in eltspre 

 new element is not null (Character constructor cannot 

return null) or a duplicate (insert won’t call 

elts.add)     rep invariant is preserved 

Reasoning about mutations 

 Inductive step must consider all possible changes to 

the rep 

 A possible source of changes:  representation exposure 

 If the proof does not account for this, then the proof is 

invalid 

 Basically, representation exposure allows side-effects 

on instances of the representation that are not easily 

visible 

 

Reasoning about ADT uses 

 Induction on specification, not on code 

 Abstract values may differ from concrete 

representation 

 Can ignore observers, since they do not affect 

abstract state 

 Axioms 

 specs of operations 

 axioms of types used in overview parts of 

specifications 

 

LetterSet (case-insensitive char set) 

// LetterSet: mutable finite set of case-insensitive characters 

// effects: creates an empty LetterSet 

public LetterSet ( ); 

// Insert c if this contains no char with same lower-case rep 

// modifies: this 

// effects: thispost = if (c1 thispre | 

//                             toLowerCase(c1)=toLowerCase(c)) 

//                        then thispre else thispre  {c} 

public void insert (char c); 

// modifies: this 

// effects: thispost = thispre - {c} 

public void delete (char c); 

// returns:  (c  this) 

public boolean member (char c); 

// returns:  |this| 

public int size ( ); 
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Prove some LetterSet contains two 

different letters 

 Prove 

 |S|>1  (c1,c2 S |  
          [toLowerCase(c1) ≠ toLowerCase(c2)])  

 How might S have been made? 

 

S 
constructor 

S 
T.insert(c) 

T 

S 
constructor 

S = T 
T.insert(c) 

T 

S = T  {c} 
T.insert(c) 

T 

Base case 

Inductive case #2 

Inductive case #1 

Full proof: two slides from Ernst 
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Goal:  prove that a large enough LetterSet 

contains two different letters 
Prove: |S| > 1  (c1, c2 S [toLowerCase(c1)  toLowerCase(c2)])  

Two possibilities for how S was made:  by the constructor, or by insert 
Base case: S = { }, (S was made by the constructor): 

property holds (vacuously true) 

Inductive case (S was made by a call of the form “T.insert(c)”): 

Assume: |T| > 1  (c3,c4T [toLowerCase(c3)  toLowerCase(c4)]) 

Show: |S| > 1  (c1,c2 S [toLowerCase(c1)  toLowerCase(c2)]) 

     where S = T.insert(c) 

         = “if (c5T s.t. toLowerCase(c5) = toLowerCase(c)) 
                   then T else T U {c}” 

The value for S came from the specification of insert, applied to T.insert(c): 

// modifies:  this 

// effects:  this
post

 = if (c1S s.t. toLowerCase(c1) = 
toLowerCase(c)) 

       then this
pre 

       else this
pre

 U {c} 
public void insert (char c); 

(Inductive case is continued on the next slide.) 

Goal:  a large enough LetterSet contains two different letters. 

Inductive case:  S = T.insert(c) 

Goal (from previous slide): 

Assume: |T| > 1  (c3,c4T [toLowerCase(c3)  toLowerCase(c4)]) 

Show: |S| > 1  (c1, c2S [toLowerCase(c1)  toLowerCase(c2)]) 

     where S = T.insert(c) 

                   = “if (c5T s.t. toLowerCase(c5) = toLowerCase(c))  
                   then T else T U {c}” 

Consider the two possibilities for S (from “if ... then T else T U {c}”): 

1. If S = T, the theorem holds by induction hypothesis 

(The assumption above) 
2. If S = T U {c}, there are three cases to consider: 

– |T| = 0: Vacuous case, since hypothesis of theorem (“|S| > 1”) is false 

– |T| ≥ 1: We know that T did not contain a char of toLowerCase(h), 

so the theorem holds by the meaning of union 

– Bonus:  |T| > 1: By inductive assumption, T contains different letters, 

so by the meaning of union, T U {c} also contains different letters 

Conclusion 

 A proof is a powerful mechanism for ensuring 

correctness of code 

 Formal reasoning is required if debugging is hard 

 Inductive proofs are the most effective in computer 

science 

 Types of proofs 

 Verify that rep invariant is satisfied 

 Verify that the implementation satisfies the spec 

 Verify that client code behaves correctly 
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Next steps 
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 Friday: usability; Monday: UML; Wednesday: TBA 

 A5 and A6 
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