
11/30/2011

1

CSE 331

SOFTWARE DESIGN & IMPLEMENTATION

REGRESSION TESTING

Autumn 2011

Regression Testing
First slides edited from: Ammann & Offutt

UW CSE331 Autumn 2011

2

 The process of re-testing software that has been modified

 Most software today has relatively little new development

 Correcting, perfecting, adapting, or preventing problems with
existing software

 Composing new programs from existing components

 Applying existing software to new situations

 Because of the deep interconnections among software
components, changes in one method can cause problems in
methods that seem to be unrelated

 Regression testing is intended to reduce the chance that
existing properties are harmed by a change

 Large regression test suites may accumulate as programs
age

Automation and Tool Support

UW CSE331 Autumn 2011

3

 Too many tests to be run by hand

 Tests must be run and evaluated quickly

 often overnight, or more frequently for web applications

 Testers do not have time to view the results by inspection

 Types of tools include

 Capture / Replay – Capture values entered into a GUI and replay
those values on new versions

 Version control – Keeps track of collections of tests, expected results,
where the tests came from, the criterion used, and their past
effectiveness

 Scripting software – Manages the process of obtaining test inputs,
executing the software, obtaining the outputs, comparing the results, and
generating test reports

 Tools are plentiful and inexpensive (often free)

Managing Tests in a Regression Suite
4

 Test suites accumulate new tests over time

 Test suites are usually run in a fixed, short, period of
time – often overnight, sometimes more frequently,
sometimes less

 At some point, the number of tests can become
unmanageable

 We cannot finish running the tests in the time allotted

 We can always add more computer hardware

 But is it worth it? Does it solve the problem? How many
of these tests really need to be run ?

Another related situation

UW CSE331 Autumn 2011

5

 When security flaws are made public, companies are
under immense pressure to provide a fix very quickly

 Often full regression tests cannot be run in the given
time – but running no regression tests isn’t reasonable
either

Policies for Updating Test Suites
6

 Which tests to keep can be based on several policies

 Add a new test for every problem report

 Ensure that a coverage criterion is always satisfied

 Sometimes harder to choose tests to remove

 Remove tests that do not contribute to satisfying coverage

 Remove tests that have never found a fault (risky !)

 Remove tests that have found the same fault as other tests (also risky !)

 Reordering strategies

 If a suite of N tests satisfies a coverage criterion, the tests can often be
reordered so that the first N-k tests satisfies the criterion – so the
remaining tests can be removed

 This is often called test selection

 If the criterion is approximated, not guaranteed, this is often called test
prioritization

http://www.cs.gmu.edu/~offutt/softwaretest
http://www.cs.gmu.edu/~offutt/softwaretest
http://www.cs.gmu.edu/~offutt/softwaretest

11/30/2011

2

Aside

UW CSE331 Autumn 2011

7

 When we talked about white box testing, we talked

about coverage criteria – statement, edge, path,

etc.

 Criterion coverage in regression testing is somewhat

different – among other things, we have two

programs and a test suite, rather than one program

and a test suite

 We’ll see examples of how these coverage criteria

differ

When a Regression Test Fails
8

 Regression tests are evaluated based on whether the
result on the new program P’ is equivalent to the result
on the previous version P

 If they differ, the test is considered to have failed – this is
called a regression

 Regression test failures represent three possibilities :

 The software has a fault – must fix the fix

 The test values are no longer valid on the new version – must
delete or modify the test

 The expected output is no longer valid – must update the
test

 But which?

Choosing Which Regression Tests to Run
9

 Change impact analysis: how does a change impact the rest of the
software?

 When a small change is made in the software, what portions of the
software can be impacted by that change?

 More directly, which tests need to be re-run?

 Conservative approach : Run all tests

 Cheap approach : Run only tests whose test requirements relate to the
statements that were changed

 Analytic approach : Consider how the changes propagate through the
software

 Clearly, tests that never reach the modified statements do not need
to be run – is this true?

 Lots of clever algorithms to perform change impact analysis have
been invented

Rationales for Selecting Tests to Re-Run
10

 Inclusive : A selection technique is inclusive if it

includes tests that are “modification revealing”

 Unsafe techniques have less than 100% inclusiveness

 Precise : A selection technique is precise if it omits

regression tests that are not modification revealing

 Efficient : A selection technique is efficient if

deciding what tests to omit is cheaper than running

the omitted tests

 This can depend on how much automation is available

New idea: stay tuned…

Step 3: Construct syntax trees for each node in the CFGs of P

and P’. This step can be executed while constructing the CFGs

of P and P’.

©Aditya P. Mathur 2009

Overview of a test selection method

Step 1: Given P and test set T, find the execution trace of P for

each test in T.

Step 2: Extract test vectors from the execution traces for each

node in the CFG of P

Step 4: Traverse the CFGs and determine the a subset of T

appropriate for regression testing of P’.

Last update: December 23, 2009

These slides are copyrighted. They are for use
with the Foundations of Software Testing

book by Aditya Mathur. Please use the slides
but do not remove the copyright notice.

Which statements in P are executed when T is run?

Which tests execute which statements in P?

©Aditya P. Mathur 2009

Execution Trace [1]

Let G=(N, E) denote the CFG of program P. N is a finite set of

nodes and E a finite set of edges connecting the nodes.

Suppose that nodes in N are numbered 1, 2, and so on and that

Start and End are two special nodes as discussed in Chapter 1.

Let Tno be the set of all valid tests for P’. Thus Tno contains

only tests valid for P’. It is obtained by discarding all tests that

have become obsolete for some reason.

http://www.cs.purdue.edu/homes/apm/foundationsBook/.../Chapter-5.ppt

11/30/2011

3

©Aditya P. Mathur 2009

Execution Trace [2]

An execution trace of program P for some test t in Tno is the

sequence of nodes in G traversed when P is executed against t. As

an example, consider the following program.

©Aditya P. Mathur 2009

Execution Trace [3]

Here is a CFG for our example program.

Like for coverage, but with
interprocedural call/return included

©Aditya P. Mathur 2009

Execution Trace [4]

Now consider the following set of three tests and the corresponding

trace.

©Aditya P. Mathur 2009

Test vector

A test vector for node n, denoted by test(n), is the set of tests that

traverse node n in the CFG. For program P we obtain the following

test vectors.

test 1 and test 3 execute main

©Aditya P. Mathur 2009

Syntax trees

A syntax tree is constructed for each node of CFG(P) and CFG(P’).

Recall that each node represents a basic block. Here sample syntax

trees for the example program.

Standard compiler representation: represent
the program as a tree – produced by parsing
the source code

©Aditya P. Mathur 2009

Test selection [1]

Given the execution traces and the CFGs for P and P’, the following

three steps are executed to obtain a subset T’ of T for regression

testing of P’.

11/30/2011

4

Top-down, recursive, pairwise
analysis of the CFGs

©Aditya P. Mathur 2009

Test selection [2]

The basic idea underlying the SelectTests procedure is to traverse

the two CFGs from their respective START nodes using a recursive

descent procedure.

The descent proceeds in parallel and the corresponding nodes are

compared. If two two nodes N in CFG(P) and N’ in CFG(P’) are

found to be syntactically different, all tests in test (N) are added to

T’.

©Aditya P. Mathur 2009

Test selection example

Suppose that function g1 in P is modified as follows.

Try the SelectTests algorithm and check if you get T’={t1, t3}.

©Aditya P. Mathur 2009

Issues with SelectTests

Think:

What tests will be selected when only, say, one declarations is

modified?

Can you think of a way to select only tests that correspond to

variables in the modified declaration?

More clever algorithms…
22

 Beyond the scope of 331

 Prioritization – an example “greedy” approach

 “Diff” P and P’ to identify the basic blocks (sequences
of statements always executed together)

 Identify the statements involved in new or modified
paths

 Use the test vectors to find the test that covers the
largest number of these statements

 Repeat until no more of the statements can be covered
by remaining tests

Regression testing is real

UW CSE331 Autumn 2011

23

 But don’t forget that it specifically does not include

tests of new aspects of a program – it is not

common for test suites to get out of date in this

regard

UW CSE331 Autumn 2011 24

