Today's Process

- If you haven't completed the solution sheet for Worksheet A, please leave (and go finish it)
- Make sure your student ID (or name) is on your solution sheet
- We'll collect them all, shuffle them, and hand them out - if you get your own, let us know ASAP, since grading your own is not allowed
- Then use a post-it to put your student ID (and name) on the sheet you are grading - otherwise we cannot give you the extra credit you should earn

CSE 331

SOFTWARE DESIGN \& IMPLEMENTATION WORKSHEET A

Autumn 2011

$y \leq 3\{x=y+1\} 2 x+y \leq 11$

\square Apply assignment rule $\mathbf{Q}(E) \quad\{\mathbf{x}=\mathrm{E}\} \quad \mathrm{Q}(\mathbf{x})$
\square In this case, directly from the triple

- $E \equiv y+1$
- $Q(x) \equiv 2 x+y \leq 11$
\square So

$Q(E) \equiv 2(y+1)+y \leq 11$

The precondition is $y \leq 3$, which implies $Q(E)$, so the triple is true

CSE331 11au

n is even $\wedge n \leq 100$
 $\{n=n+2\} n$ is even $\wedge n \leq 101$

\square Apply assignment rule; in this case, directly from the triple

- $E \equiv n+2$
$\square Q(n) \equiv n$ is even $\wedge n \leq 101$
\square So
$Q(E) \equiv(n+2$ is even) $\wedge n+2 \leq 101$ $\equiv(n+2$ is even) $\wedge n \leq 99$
The precondition is \mathbf{n} is even $\wedge \mathbf{n} \leq 100$
- The precondition conjunct \mathbf{n} is even $\Rightarrow \mathbf{n + 2}$ is even

The precondition conjunct $\mathbf{n} \leq \mathbf{1 0 0}$ does not $\Rightarrow \mathbf{n} \leq \mathbf{9 9}$
So the triple is false

- 2 points for false; 0 points for true

1 point for true with an arithmetic mistake but not for getting the implication between $n \leq 100$ and $n \leq 99$ wrong
true $\{x=5 ; y=0\} x=5$
\square Introduce intermediate assertion
$\square \operatorname{true}\{x=5\} \mathbf{x}=5\{y=0\} \mathbf{x}=5$
\square Work backwards (forwards works, too)
$\square \mathbf{x}=5\{y=0\} \mathbf{x}=5$
is true by trivial application of assignment rule
$\square \operatorname{true}\{x=5\} \mathbf{x}=5$
is also true by trivial application of assignment rule
\square So the triple is true

-
-
-

CSE331 11 au
$x=2 \wedge x=3\{x=5\} x=0$

Simplify to
 false $\{x=5\} x=0$

\square A Hoare triple with a false precondition is always true - the same as false precondition allowing a piece of code to provide any behavior

- Or push the assignment rule through to get
false $\Rightarrow 0=5$, which also yields true since false \Rightarrow false is true
\square So the triple is true $\quad \begin{aligned} & 2 \text { points for true } \\ & 0\end{aligned}$ - 0 points for false
true
\{System.out.println("Hello world")\} false
\square Because the print statement doesn't change the program state, this reduces to
true \{no-op\} false
\square Does true \Rightarrow false? No
\square So the triple is false

- 2 points for false
- 0 points for true
- No partial credit

false

\{System.out.println("Hello world")\} true
\square See $\mathbf{x}=2 \wedge \mathbf{x}=3\{x=5\} \mathbf{x}=0$
\square The triple is true

-	2 points for true
-	0 points for false
-	No partial credit

$x=1\{$ while $x!=0$ do $x=x+1\} x=100$

Define I as $x \leq 100$
A. $x=1 \Rightarrow x \leq 100$
$Q(x) \equiv x \leq 100$ so $Q(E) \equiv x+1 \leq 100$
$Q(E) \equiv x \leq 99$
Precondition $x=1 \Rightarrow Q(E)$
c. $x=0 \wedge(x \leq 100)$ does not $\Rightarrow x=100$

- Could there be an I that works? No. Negating the condition for the third part will never let $\mathbf{x}=0 \wedge \mathbf{I} \Rightarrow$
$\mathbf{x}=100$ for any I

- 2 points for false
- 0 points for true

$x>2\{$ if $x>2$ then $y=1$ else $y=-1\} y>0$
\square Conditionals of the form \mathbf{P} \{if $\mathbf{C} S_{1}$ else $\left.S_{2}\right\} \mathbf{Q}$ require
$\left(P \wedge C\left\{S_{1}\right\} Q\right) \wedge\left(P \wedge \neg C\left\{S_{2}\right\} Q\right)$
$\square(x>2 \wedge x>2 \quad\{y=1\} \quad y>0) \wedge$
$(x>2 \wedge x \leq 2 \quad\{y=-1\} \quad y>0)$
\square The first conjunct is true: $x>2\{y=1\} y>0$
\square The second conjunct is true: false $\{y=-1\} \quad y>0$
\square So the triple is true

$x=0\{$ while $x==0$ do $x=x+1\} x=1$

Loops of the form $P\{$ while B do $S\} Q$ require a loop invariant I to be defined and three properties to

The invariant holds on entry to the loop: $\mathbf{P} \Rightarrow \mathbf{I}$
The invariant holds after execution of the loop body: $B \wedge I\{S\}$
If the loop terminates, the postcondition can be proved:
$\neg \mathrm{B} \wedge \mathrm{I} \Rightarrow \mathrm{Q}$
Define I as $x=0 \vee x=1$
$\mathrm{x}=0 \Rightarrow \mathrm{x}=0 \mathrm{vx}=1$
B. $\mathrm{x}=0 \wedge(\mathrm{x}=0 \mathrm{vx}=1)\{\mathrm{x}=\mathrm{x}+1\} \mathrm{x}=0 \mathrm{vx}=1$
$x=0\{x=x+1\} \quad x=0 v x=1$
$Q(x) \quad \equiv x=0 v x=1$ so $Q(E) \equiv x+1=0 v x+1=1$
$\begin{array}{ll}Q(x) & \equiv x=0 \vee x=1 \\ Q(E) & \equiv x=-1 v x=0\end{array}$
$Q(E) \equiv x=-1 v x=0$
Precondition $x=0 \Rightarrow Q(E)$
$x!=0 \wedge(x=0 \vee x=1) \Rightarrow x=1 \quad$ - 2 points for true
So the triple is true - 1 point for false with correct invariant

- 0 points for false with incorrect invariant
$2 x=3 y\{x=2 x\} x=3 y$

$\square Q(x)$	$\equiv x=3 y$
$\square Q(E)$	$\equiv Q(2 x)$
	$\equiv(2 x)=3 y$
	$\equiv 2 x=3 y$

So the precondition $2 x=3 y \Rightarrow 2 x=3 y[Q(E)]$
\square Yes, so the tuple is true

- 2 points for true
-

0
points for false

- No partial credit

$$
x / y \text { - remainder }(r) \text { and quotient }(q)
$$

13	
$\begin{aligned} & \} \\ & j=2^{n} \end{aligned}$	- -2 for reporting that the triple is false - -3 points for incorrect loop invariant - -1 point for each of the three subparts that is missing - -1 or -2 for confusing reasoning
CSE331 11au	

		$I \equiv j=2^{k}$ A. $(k=0 \wedge j=1) \Rightarrow j=2^{k}$ B. $\begin{aligned} & (k!=n) \wedge j=2^{k} \quad\left\{k=k+1 ; j=2^{*} j\right\} \quad j=2^{k} \\ & 2 j=2^{(k+1)} \\ & 2 j=2^{k} \mathbf{2} \\ & j=2^{k} \end{aligned}$ C. $\left(k=n \wedge j=2^{k}\right) \Rightarrow j=2^{n}$ QED $I \equiv j=2 k+1$ A. $(k=0 \wedge j=1) \Rightarrow j=2 k+1$ B. $\begin{aligned} & (k!=n) \wedge j=2 k+1 \quad\{k=k+1 ; j=2+j\} \quad j=2 k+1 \\ & 2+j=2(k+1)+1 \\ & 2+j=2 k+2+1 \\ & 2+j=2 k+3 \\ & j=2 k+1 \end{aligned}$ C. $\left(k=n \wedge j=2^{k}\right) \Rightarrow j=2^{n}$ QED QED
```n > 0 { k=0; j=1; while (k!=n) { k=k+1; j=2+j; } } j = 2n+1```		
- -3 for reporting that the triple is false   - -4 for an entirely separate proof from the previous item   - - 1 to -3 for confusing association between the previous proof and this proof		



