Today’s Process
If you haven’t completed the solution sheet for Worksheet B,
please leave (and go finish it)
Make sure your student ID (or name) is on your solution sheet
We'll collect them all, shuffle them, and hand them out — if you
get your own, let us know ASAP, since grading your own is not
allowed

Then use a post-it to put your student ID (and name) on the sheet

you are grading — otherwise we cannot give you the extra credit
you should earn

CSE 331
SOFTWARE DESIGN & IMPLEMENTATION
WORKSHEET B

True /False
=

o Reducing the size of a test case is an important step in
debugging.

* 2 points for true
0 points for false

01 The objective of this step is to narrow the part of the
program that must be considered — and the program is
usually much bigger than the size of the test case that
failed

CSE331 11au

True /False
=

o An advantage of implementing repOK as a method
instead of as an exception is that it allows the
implementer of a class to re-establish a broken
representation invariant.

* 2 points for true
* 0 points for false

0 Doesn’t always happen, but it's certainly feasible

CSE331 11au

12/10/2011

True /False
=

o A UML class diagram can be executed (just like a
Java program can be executed).

* 2 points for false
* 0 points for true

o Although some aspects of UML diagrams have
great similarity to a programming language, it is
not a programming language

CSE331 11au

True /False
=

0 A good practice is to treat all Java exceptions -- both
checked and unchecked exceptions -- in the same way.

* 2 points for false
* 0 points for true

o1 Unchecked exceptions (like NullPointerException) can in
principle occur anywhere; checked exceptions (defined
for a given program) cannot

It's essential to treat checked exceptions carefully, usually

through exception chaining — but other approaches can be
used for handling unchecked exceptions

CSE331 11au

True /False
=

o The singleton pattern and the ability to define
multiplicity in UML provide the same power to a
design/programmer.

* 2 points for false
* 0 points for true

0 Both relate to multiplicity, but UML allows much
richer relationships than “precisely one instance.”

CSE331 11au

12/10/2011

True /False

Representation invariants would be more
appropriate to apply to a UML class diagram than
in a UML sequence diagram.

* 2 points for true
* 0 points for false

Representation invariants address the question of
“what are legal values of the representation” but
do not directly address the question of the
operations, their order of invocation, etc.

CSE331 11au

True /False

Regression testing in principle addresses the
removal of tests that no longer apply to a program.
* 2 points for true
+ 0 points for false
Regression testing can no longer run tests that apply
to (for example) removed features

These tests are often not actually removed, but their
failures are noted without concern

True /False

Covariance /contravariance are concepts used to
define the type system of a programming
language.

* 2 points for true
* 0 points for false

These terms refer to a relationship among types —
they are used to define a languages notion of
“stronger” and “weaker” types, allowing or
disallowing substitution

CSE331 11au

CSE331 11au
* 2 points for true
TI’UG/FGISG * 0 points for false
At run- Type erasure
time, you
cannot
determine Al generic types become type Object once compiled
the precise One reason: backward compatibility with old byte code
value of a So, at runtime, all generic instantiations have the same type
pcrdmefer List<String> 1lstl = new ArrayList<String>();
of a List<Integer> lst2 = new ArrayList<Integer>();
generic lstl.getClass () == lst2.getClass() // true
class.
You cannot use instanceof to discover a type parameter
Collection<?> ¢s = new ArrayList<string>();
if (cs instanceof Collection<String>) {
// illegal
}

Consider the UML class diagram of the
adapter pattern. Does this diagram represent
conventional call-return flow-of-control, or does it
represent inversion-of-control? In one sentence,
justify your answer.

+ -2 points for answering “inversion-of-control”

« -1, -2, -3 points for missing, confusing or
inaccurate justification. [cient [adaptor |

| e N |
]

| N [saethada]

Example: “This pattern uses standard flow-of-control: o - 1Y
adaptor wethodA () adsptes. nethudn ()

in each case, the caller explicitly knows the name of

the class/interface that it is calling.”

CSE331 11au

Sketch a UML class diagram that describes the
relationships among parties, tables, and the waiting
list from A3 (Restaurant)
Key points

Waiting list: O or more parties (ordered)

Table: O or more parties

Party: Size, name, seated or on waiting list

CSE331 11au

http://en.wikipedia.org/wiki/File:ObjectAdapter.png

True or false: The primary objective of design
patterns is to make it easier to ensure correctness of
an implementation. In one sentence, justify your
answetr.

* -2 points for true
* -1 for a justification not mentioning “change”
* -1, -2 points for additional missing, confusing or inaccurate justification.

12/10/2011

Example: “Although a few patterns (such as Singleton) constrain a program in a way that
eases reasoning, most patterns (such as Visitor, MVC, etc.) provide ways to ease future

program modifications.”

CSE331 11au

Willard Van Orman Quine

Famous philosopher and logician (1908-2000)
Erd8&s number: 3
Same as me: Notkin—>Beame—>Saks—Erd8s

Two students famous for reasons other than
philosophy or logic

Quine: A program that prints itself

public class Qu {

public static void main(String[] args) {
String[] str = {

"public class Qu {",

public static veid main(String[] args) {",
string[] str = {",

i<3;i++)System.out.println(str[i]):",
<9;i++) System.out.println ((char)34+str(il+(char)34+',');",
;i<9;i++)System.out.println(str[i]):",

;i<3;i++) System.out.println(str[i]);
i<9;i++)System.out.println((char)34+str[il+(char)34+',');
51<9;i++) System.out.println(str[i]);

CSE331 11au

http://en.wikipedia.org/wiki/Willard_Van_Orman_Quine
http://en.wikipedia.org/wiki/Theodore_Kaczynski

