
CSE 331, Spring 2011
Section 2 cheat sheet

Equals, Comparable, Comparator, Clone

Equals

public boolean equals(Object o) {
return this == o;

}

Guidelines:
• x.equals(x) should return true
• x.equals(y) should return true if and only if y.equals(x) returns true
• if x.equals(y) and y.equals(z) return true, then x.equals(z) should return true
• multiple invocations of x.equals(y) should consistently return the same answer if no state used in the equals

method changes
• x.equals(null) should return false
• generally necessary to override hashCode() whenever equals() is overridden

Special notes:
• must take an Object as the parameter
• should be legal to compare this object to *any* other object, including objects of different type (return false in

that case)
• use getClass() to compare the type of this object and the parameter object

Equals() in the wild:
• contains() method of Collection uses equals() to determine equality
• two different implementations of Set can be equal if they have the same contents

Effective Java Tip #8: Obey the general contract when overriding equals.

Implementing Comparable<T>

public interface Comparable<T> {
public int compareTo(T o);

}

Semantics of a.compareTo(b):

Returned int Relationship between a and b
- a < b; a "comes before" b in the natural ordering
0 a = b
+ a > b; a "comes after" b in the natural ordering

Guidelines:
• used to describe a "natural ordering" of a class of objects
• x.compareTo(null) should throw a NullPointerException
• recommended that compareTo() be consistent with equals()

Implementation hints:
• use the subtraction trick (return this.int - other.int)
• call the compareTo() method of fields that are objects (return this.string.compareTo(other.string))
• the toString() trick

• for doubles, use either Math.signum() (return (int)Math.signum(this.double - other.double)), or if/else chains

CompareTo in the wild:
• Every collection or method in the java library that uses the "natural ordering" of elements calls compareTo(),

including:
o TreeMap
o TreeSet
o PriorityQueue
o Collections.sort()

Effective Java Tip #12: Consider implementing Comparable.

Implementing Comparator<T>

public interface Comparator<T> {
public int compare(T o1, T o2);
public boolean equals(Object o);

}

Semantics of compare(a, b):
Same as a.compareTo(b)

Guidelines:
• used to describe an "artificial ordering" of a class of objects, even if there is no "natural ordering"
• can be passed to java library objects and methods that use sorting instead of compareTo()

Clone

protected Object clone() throws CloneNotSupportedException {...}

General intent:
• that all of the following are true:

o x.clone() != x
o x.clone().getClass() == x.getClass()
o x.clone().equals(x)

Special notes:
• when overriding, change to a public method and change return type
• must implement Cloneable interface
• use super.clone() as the initial copying operation (performs a shallow copy), then add in modifications of fields,

deep copying, etc

Shallow copy:
• copies the values of all primitive fields and the references to all object fields
• objects used by this object are now shared by the original and the clone
• this is what Object.clone() does

Deep copy:
• copies the values of all primitive fields and clones all object fields
• objects used by the clone are separate copies

Effective Java Tip #11: Override clone judiciously.

