
CSE 331, Autumn 2011
Section 2 cheat sheet

JUnit, Javadoc, Eclipse

JUnit 4

Method annotations:
tag description
@Test Turns a public method into a JUnit test case.
@Test (timeout = time) Adding a timeout will cause the test case to fail
@Test (expected = exception.class) after time milliseconds. Adding an expected

exception will cause the test case to fail
if exception is not thrown.

@Before Method to run before every test case
@After Method to run after every test case
@BeforeClass Method to run once, before any test cases have run
@AfterClass Method to run once, after all test cases have run

Assertion methods:
method description
assertTrue(test) fails if the Boolean test is false
assertFalse(test) fails if the Boolean test is true
assertEquals(expected, actual) fails if the values are not equal
assertSame(expected, actual) fails if the values are not the same (by ==)
assertNotSame(expected, actual) fails if the values are the same (by ==)
assertNull(value) fails if the given value is not null
assertNotNull(value) fails if the given value is null
fail() causes the current test to immediately fail

Each method can also be passed a string to display if it fails, e.g.
assertEquals(“message”, expected, actual)

Unit testing tips:

• The entire goal is FAILURE ATOMICITY- the ability to know exactly what failed when a test
case did not pass

• Tests should be self-contained and not care about each other

• you cannot test everything! Instead think about:

– boundary cases,

– empty cases,

– behavior in combination (but not to excess)

• Each test case should test ONE THING

– 10 small tests are better than 1 test 10x as large

– Rule of thumb: 1 assert statement per test case

– Try to avoud complicated logic

• Torture tests are ok, but only in addition to simple tests

1 Taken from 331 Section Handouts Spring 2011 (Marty Stepp)



JUnit best practices:

• Use descriptive test names

• Add a default timeout to every test

• Use private methods to get rid of redundant test code

• Create test suites using @RunWith and @Suite.SuiteClasses to run tests for several classes at once

• Build quick arrays and collections using array literals

– int[] quick = new int[] {1, 2, 3, 4};
– List<Integer> list = Arrays.asList(7, 4, -3, 18);

– Set<Integer> set = new HashSet<Integer>(Arrays.asList(5, 6, 10) );

Javadoc

• Whenever you write a class to be used by clients, you should write full Javadoc comments for all of its
public behavior (private methods should have comments, but they shouldn’t be Javadoc).

• Don’t repeat yourself or write vacuous comments.

• Each class constant or enumeration value can be commented.

• precondition: Something assumed to be true at the start of a call.

• postcondition: Something your method promises will be true at the end of its execution, if all
preconditions were true at the start.

• Assertions: used to check preconditions

On a method or constructor:
tag description
@param name description describes a parameter
@return description describes what value will be returned
@throws ExceptionType reason describes an exception that may be thrown

(and what would cause it to be thrown)
{@code sourcecode } for showing Java code in the comments
{@inheritDoc} allows a subclass method to copy Javadoc comments

from the superclass version

On a class header:
tag description
@author name author of a class
@version number class’s version number, in any format

2 Taken from 331 Section Handouts Spring 2011 (Marty Stepp)


