
Section 3!
Including, but not limited to,

some or all of the following…

 Subversion test coverage

 handling invalid input

CSE 331, 10/13/11 TA: Krysta Yousoufian

Bookkeeping:
Stuff you should know

• Krysta can’t remember faces… (or names)

o It’s VERY awkward. But it’s genetic.

o I’m not being rude, just oblivious. I promise!

o Yes, I want you to call me out if I forget we’ve met

• I also talk too fast… call me out on that too!

• Krysta’s office hours policy
o I’m in the labs pretty often, working on my own stuff

o You can ALWAYS ask me for help!

o If it’s a bad time for me, I will say so – so don’t be afraid to ask

o (But do try to work through things on your own first… it will make

you a better programmer)

Bookkeeping:
Stuff we want to know

• Piazza
o Like? Dislike?

• Important announcements
o Piazza OK? Mailing list? Both?

• Office hours
o Would Thurs OH be useful?

o (Good chance I’ll be there anyway after 1pm… see previous

slide)

Version Control
(in which we build big software without losing our sanity)

• System for tracking changes to code

• Essential for managing big projects
o Learn it now – you WILL use it again and again!

• Makes it easy to:
o Merge multiple developers’ changes

o Avoid overwriting each others’ changes

o Revert back to an older version of a file

o See a history of changes

o Back up your work

o …and more!

• You’ll use Subversion (SVN) this quarter
o There are others: Mercurial, Git, CVS, …

Overview

Organization

svn

Working
copy

Working
copy

Repository

• A repository stores the
master copy of the project
o Someone creates the repo for a new

project

o Then nobody touches this copy
directly

o Lives on a server everyone can
access

• Each person checks out her
own working copy
o Makes a local copy of the repo

o You’ll always work off of this copy

o The version control system syncs
the repo and working copy (with
your help)

Everyday commands:

• Commit / checkin
o integrate changes from your

working copy into the repository

• Update
o integrate changes into your

working copy from the repository

Common Actions

Working
copy

Repository

svn

c
o

m
m

it
 u
p

d
a

te

Less frequent commands:

• Add, delete
o add or delete a file in the

repository

• Revert
o wipe out your local changes to a

file

• Resolve, diff, merge
o Handle a conflict – two users

editing the same code
Working

copy

Repository

svn

a
d

d
,
d

e
le

te

re
v

e
rt

Common Actions

Getting Started
• Multiple ways to use SVN

o Subclipse: plugin for Eclipse

o Can also use command-line, TortoiseSVN/NautilusSVN (GUI)

1. Create repository (command-line):
Run the following on attu (Linux lab machine or SSH):

 > svnadmin create /projects/instr/11sp/cse331/GROUPNAME
 > chmod -R g+rw /projects/instr/11au/cse331/GROUPNAME

to turn your shared group directory into a repository. Totally lost?
That’s OK!! Email me to meet for a 5-minute intro to Linux.

1. Install Subclipse
o Should already be installed in labs

o See section handout and
http://www.cs.washington.edu/education/courses/cse331/11sp/groups.shtml

3. Create or checkout project
o See http://www.cs.washington.edu/education/courses/cse331/11sp/groups.shtml

(again)

http://www.cs.washington.edu/education/courses/cse331/11sp/groups.shtml
http://www.cs.washington.edu/education/courses/cse331/11sp/groups.shtml

Using Subclipse
• “Team Synchronization” perspective

o Can use to perform updates, commits, etc.

o Eclipse will ask you if you want to use this, or go to Windows
-> Open Perspective -> Other…

o For most commands, right-click in “Synchronization” tab

o Updates: may need to click “Synchronize SVN” button first

• Ordinary Java perspective
o Team Sync view not great while you’re busy coding (Sync

tab only shows certain files, etc.)

o Restore “regular” perspective from Windows -> Open
Perspective -> Other… -> Java (Default) or icons in top-
right corner

o In Package Explorer, right-click on your project and choose
“Team” to do updates (“Update to HEAD”), commits, etc.

Using Subclipse
• “Team Synchronization” perspective

o Use to perform updates, commits, etc.

o Eclipse will ask you if you want to use this, or go to Windows

-> Open Perspective -> Other…

o For most commands, right-click in “Synchronization” tab

o Updates: may need to click “Synchronize SVN” button first

• Ordinary Java perspective
o Team Sync view not great while you’re busy coding (Sync

tab only shows certain files, etc.)

o Restore “regular” perspective from Windows -> Open
Perspective -> Other… -> Java (Default) or icons in top-

right corner

Using Subclipse

Demo!

By the way, http://svnbook.red-bean.com/ is a great resource for SVN

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Handling Invalid Input
(a.k.a. expecting the unexpected)

Invalid Input (Callee)
• Reference: Effective Java, pg. 181

• Note: confusion around

Assignment 1…
o Replace anything I said earlier with what

I’m saying now

o Because of GUI design, you couldn’t

always follow these recommendations

• Assume nothing: many reasons

preconditions violated
o Buggy code, malicious code, sloppy

code

Invalid Input (Callee)
• Fail early and often: easier to locate bugs

• Fail friendly: make the caller’s job easier

o Throw an exception, document with
@throws

o e.g. IllegalArgumentException,
IndexOutOfBoundsException,

NullPointerException

o Don’t leave data structures or operations in

intermediate states

• But remember: fancy input validation

might be expensive

o E.g. binary search: verifying that the list is sorted defeats the

point of doing binary search

Invalid Input (Caller)
• Know what might cause unexpected values

o User input

o Data access: failure to open file, connect to database, etc. (null values?)

• Validate parameters before calling …
o User input especially!

• … or be prepared to catch exceptions
o Use a try…catch block

o Are you sure the method validates input?

Test Coverage
(knowing what to test and when to stop)

Input Categories
• Classes of input that could be expected to cause

different behavior
o Negative integers, positive integers, zero

o Reversing a string: odd, even length

• Run at least one test from each class

• Sometimes multiple ways to categorize

• Example: testing that Item.toString() prints two digits

after decimal point

Input Categories
Example: testing that Item.toString() prints two digits

after decimal point: what if…

• Price is an integer? ($10.00)

• Price has one digit after decimal point? ($10.50)

• Price has two digits after decimal point? ($10.99)

• Price has 3+ digits after decimal point? ($10.895)

• Price is negative? Zero? Positive?

• Price has zero/one/two digits before decimal?

($0.05, $1.05, $10.05)

Boundary Conditions
• Values on the edges between input categories

• Example: ShoppingCart discounts total if cart

contains at least q items

• What if cart contains exactly q items? q-1 items?

q+1?

• (Not really a boundary condition, but… what if cart

contains q items and then one is removed?)

Edge Cases
• The uncommon case: extreme or unexpected

values

• Empty/null/zeros: search an empty list, reverse an

empty string

• Ones: search a one-element list, one-element string

• Minima/maxima

• Unusual patterns

• Sorting algorithm: list already sorted, reverse-sorted

• Strings: non-alphabetic characters? non-ASCII

characters?

Invalid Input
• What should happen with invalid input?

• Make sure the program doesn’t crash, at least

• JUnit: use
@Test(expected=ExceptionName.class) to test

that exception is thrown

Where to stop?
• You can never test all possible inputs

• With each new test, ask: “What is this testing that

has not been covered in a previous test?”

o A different input category?

o A boundary condition?

o An edge case?

SDET Test Buckets
• DON’T need to know for this course

• DO need to know for job interviews (SDET, also SDE)

• Test buckets:
o Input categories

o Boundary conditions

o Edge cases

o Internationalization

o Accessibility

o Security

o Performance

o Stress/load testing

o Possibly more…

