Section 3!

Including, but not limited fo,
some or all of the following...

Subversion test coverage

handling invalid input

CSE 331, 10/13/11 TA: Krysta Yousoufian

Bookkeeping:
Stuff you should know

Krysta can't remember faces... ® (or names)

©)

©)

©)

It's VERY awkward. But it's genetic.
I'm not being rude, just oblivious. | promise!
Yes, | want you to call me out if | forget we've met

| also talk too fast... call me out on that tool
Krysta's office hours policy

O
O
O
O

I'm in the labs pretty often, working on my own stuff
You can ALWAYS ask me for help!
If it's a bad time for me, | will say so — so don’t be afraid to ask

(But do try to work through things on your own first... it will make
you a better programmer)

Bookkeeping:
Stuff we want to know

Plazza
o Like? Dislike?

Important announcements
o Piazza OKe Mailing liste Bothe

Office hours

o Would Thurs OH be useful?¢

o (Good chance I'll be there anyway after 1pm... see previous
slide)

Version Control

(in which we build big software without losing our sanity)

Overview

System for tracking changes to code

Essential for managing big projects
o Learn it now —you WILL use it again and again!

Makes it easy to:

o Merge muliiple developers’ changes

o Avoid overwriting each others’ changes
o Revert back to an older version of a file
o See a history of changes

o Back up your work

o ...and more!

You'll use Subversion (SVN) this quarter
o There are others: Mercurial, Git, CVS, ...

Organization

* A repository stores the
master copy of the project

o Someone creates the repo for a new
project

o Then nobody touches this copy
directly

o Lives on a server everyone can
access
 Each person checks out her

own working copy / \

o Makes a local copy of the repo Working
o You'll always work off of this copy - copy
o The version confrol system syncs Working
the repo and working copy (with copy
' o

your help)

Everyday commands:

e« Commit / checkin

o Integrate changes from your
working copy into the repository

 Update

o Infegrate changes into your
working copy from the repository

Working
copy

Common Actions

Less frequent commands:
Add, delete

o add or delete afile in the
repository

Revert

o Wipe out your local changes to a
file

Resolve, diff, merge

[P ' S | N

add, delete

o Handle a conflict — two users
editing the same code

Working
copy

Getting Started

* Mulfiple ways to use SVN

o Subclipse: plugin for Eclipse
o Can also use command-line, TortoiseSVN/NautilusSVN (GUI)

1. Create repository (command-line):

Run the following on attu (Linux lab machine or SSH):
> svnadmin create /projects/instr/11sp/cse331/GROUPNAME
> chmod -R g+rw /projects/instr/l1lau/cse331/GROUPNAME

to tfurn your shared group directory into a repository. Totally loste
That’s OK!l Email me to meet for a 5-minute intro to Linux.
1. Install Subclipse

o Should already be installed in labs

o See section handout and
http://www.cs.washington.edu/education/courses/cse331/11sp/aroups.shiml

3. Create or checkout project

o See h.’r’rp://www.cs.woshinq’ron.edu/educo’rion/courses/cse331/1 1sp/groups.shitml
(again)

http://www.cs.washington.edu/education/courses/cse331/11sp/groups.shtml
http://www.cs.washington.edu/education/courses/cse331/11sp/groups.shtml

Using Subclipse

« “Team Synchronization” perspective
o Can use to perform updates, commits, efc.

o Eclipse will ask you if you want to use this, or go to Windows
-> Open Perspective -> Other...

o For most commands, right-click in “Synchronization” tab
o Updates: may need to click “Synchronize SYN"” button first

« Ordinary Java perspective

o Team Sync view not great while you're busy coding (Sync
tab only shows certain files, etc.)

o Restore “regular” perspective from Windows -> Open
Perspective -> Other... -> Java (Default) oricons in top-
right corner

o In Package Explorer, right-click on your project and choose
“Team” to do updates (“Update to HEAD"”), commits, etc.

Using Subclipse

« “Team Synchronization” perspective
o Use to perform updates, commits, etc.

o Eclipse will ask you if you want to use this, or go to Windows
-> Open Perspective -> Other...

o For most commands, right-click in “Synchronization” tab
o Updates: may need to click “Synchronize SYVN"” button first

* Ordinary Java perspective

o Team Sync view not great while you're busy coding (Sync
tab only shows certain files, etc.)

o Restore “regular” perspective from Windows -> Open

Perspective -> Other... -> Java (Default) oricons in top-
right corner

Using Subclipse

Demol

By the way, http://svnbook.red-bean.com/ is a great resource for SVN

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Handling Invalid Input

(a.k.a. expecting the unexpected)

Invalid Input (Callee)

Reference: Effective Java, pg. 181

Note: confusion around W 3
Assignment 1... ""\"‘L*
o Replace anything | said earlier with what \”2\ ‘-,
I'm saying now $/°’

o Because of GUI design, you couldn’t
always follow these recommendations

Assume nothing: many reasons
preconditions violated

o Buggy code, malicious code, sloppy
code

Invalid Input (Callee)

Fail early and often: easier to locate bugs

Fail friendly: make the caller’s job easier

o Throw an exception, document with
@throws

v
N
o €.g.IllegalArgumentException, {&3
IndexOutOfBoundsException,
NullPolinterException \

o Don't leave data structures or operations in
infermediate states

But remember: fancy input validation
might be expensive

o E.g. binary search: verifying that the list is sorted defeats the
point of doing binary search

Invalid Input (Caller)

« Know what might cause unexpected values

o Userinput
o Data access: failure to open file, connect to database, etc. (null values?)

« Validate parameters before calling ...
o User input especially!

e ... Or be prepared to catch exceptions _\\ ‘
o Use atry...catch block

o Are you sure the method validates input? §

Test Coverage

(knowing what to test and when to stop)

Input Categories

Classes of input that could be expected to cause
different behavior

o Negative integers, positive integers, zero
o Reversing a string: odd, even length

Run at least one test from each class
Sometimes multiple ways to categorize

Example: testing that ltem.toString() prints two digits
after decimal point

Input Categories

Example: testing that ltem.toString() prints two digits
affer decimal point: what if...

« Priceis aninteger?¢ ($10.00)

« Price has one digit after decimal pointe ($10.50)
« Price has two digits after decimal pointe ($10.99)
« Price has 3+ digits after decimal pointe ($10.895)
* Price is negative¢ Zero¢ Positivee

* Price has zero/one/two digits before decimal?
($0.05, $1.05, $10.05)

Boundary Conditions

Values on the edges between input categories

Example: ShoppingCart discounts total if cart
contains at least g items

What if cart contains exactly g itemse g-1 items?
g+le

(Not really a boundary condition, but... what if cart
contains g items and then one is removed?)

Edge Cases

The uncommon case: extreme or unexpected
values

Empty/null/zeros: search an empty list, reverse an
empty string

Ones: search a one-element list, one-element string
Minima/maxima
Unusual patterns
Sorting algorithm: list already sorted, reverse-sorted

Strings: non-alphabetic characterse non-ASCI
characterse

Invalid Input

What should happen with invalid inpute
Make sure the program doesn’t crash, at least

JUnit: use
@QTest (expected=ExceptionName.class) to test

that exception is thrown

Where to stop?

* You can never test all possible inputs

* With each new fest, ask: “What is this testing that
has not been covered in a previous teste”
o A different input category?
o A boundary condition?
o An edge case?

SDET Test Buckets

« DON'T need to know for this course
« DO need to know for job interviews (SDET, also SDE)

» Test bucketfs:

Input categories
Boundary conditions
Edge cases
Internationalization
Accessibility
Security
Performance
Stress/load testing
Possibly more...

O

© O O O O O O O

