
Section 4!
Presenting, for your educational enrichment…

Fun With Testing II

Model-View-Controller

And other sundries

CSE 331, 10/13/11 TA: Krysta Yousoufian

Announcements
• Affiliates Career Fair. BE THERE!

o Today, 10-3, Atrium + Gates Commons

• Subclipse
o Don’t actually have to use Team Sync view

o Package Explorer: right-click project under version control,

use “Team” menu

• Assignment 1
o Lenient grading on many items

o Will send out list of “-0” items. READ IT. Incorporate it in A3.

• Assignment 3: questions?

A1 Unit Test Pitfalls

• DO: comment tests – but not with JavaDoc

• DO: use descriptive names
o Not “testGetItem1, testGetItem2, …”

• DO: test ALL non-constructor methods
o Even accessors for now.

o Black-box tester doesn’t know if accessors are simple inside

• DO: test common cases

A1 Unit Test Pitfalls

• DO: split up tests into separate methods.
o Easier to see what failed

o Separate test method for each input condition

o Separate test method for each method being tested

o DON’T write one test method for each class or method

o A1: lots of people’s tests were too long

A1 Unit Test Pitfalls
• Caveat to splitting up tests

o Sometimes one method can’t be tested without another.

o If foo() has to be tested by calling bar() but not vice versa, still write

testFoo and testBar methods.

o If setFoo() and getFoo() can’t be separated (except when testing

getFoo’s initial value), just write one (or several) testChangeFoo methods.

• “Test smarter, not harder” – bigger != better

• Gold star: store parameter values in local variables

or class fields instead of hard-coding

Pitfalls: Checking Values
• DO: check values with assert()

• DON’T: use println().

• DON’T: write methods that never assert() or fail()

o … unless testing for an exception with “expected” option

o Tests that don’t assert() anything are usually not useful

• DO: use the right assert() for the occasion
o assertTrue(a) instead of assertEquals(true, a)

o assertEquals(a, b) instead of assertTrue(a == b)

o Check values inside assert instead of using if, assertTrue(true), and

fail()

Pitfalls: What to Test
Test all edge cases, input conditions, etc.

• Methods returning boolean: test false AND true
 isEmpty(), matches()

• Accessor/mutator: test default value, after changing to
multiple values

 hasDiscount(): original value, set true, set false

• Test all combinations of input/state categories (within
reason…)

 getTotal(): discount [was|wasn’t] requested, cart [does|doesn’t]
have enough items

• Test getItem(), totalQuantity(), getTotal() after adding multiple
items, replacing item

A3 Expectations
• Stricter than A0 – check those -0 points

• Always throw exceptions on bad input
o Don’t force bad input into good input (e.g. price of 0 to $0.01)

• Write descriptive comments with JavaDoc tags

• Agree with partner on coding conventions
o Ideally, official Java coding conventions

o May lose points if significantly different styles

• Tests should be:
o Thorough: ALL methods, common cases, edge/invalid/boundary

conditions

o Well-documented: non-Javadoc comments, good method names

o Well-organized: separate method for each scenario

o Well-organized: test suite with one test class for each regular class

http://www.oracle.com/technetwork/java/codeconv-138413.html

Test Your Testing Skillz…

Schedule Class
• http://www.cs.washington.edu/education/courses/

cse331/11au/sections/schedule/Schedule.html

http://www.cs.washington.edu/education/courses/cse331/11au/sections/schedule/Schedule.html
http://www.cs.washington.edu/education/courses/cse331/11au/sections/schedule/Schedule.html
http://www.cs.washington.edu/education/courses/cse331/11au/sections/schedule/Schedule.html
http://www.cs.washington.edu/education/courses/cse331/11au/sections/schedule/Schedule.html

Model-View-Controller

(or Model-View-Presenter)

MVC
• THE classic design pattern

• Used for data-driven user applications

• Such apps juggle several tasks:
o Loading and storing the data – getting it in/out of storage on

request

o Constructing the user interface – what the user sees

o Interpreting user actions – deciding whether to modify the UI or

data

• These tasks are largely independent of each other

• Model, View, and Controller each get one task

Model
talks to data

source to retrieve

and store data

Which database

tables is the requested

data stored in?

What SQL query will

get me the data

I need?

View
asks model for

data and presents

it in a user-friendly

format

Would this text look

better blue or red? In

the bottom corner

or front and center?

Should these items go in

a dropdown list or radio

buttons?

Controller
listens for the user

to change data or

state in the UI,

notifying the

model or view

accordingly

The user just clicked the

“hide details” button. I

better tell the view.

The user just changed the

event details. I better let

the model know to

update the data.

MVC: Summary
Model

talks to data source to

retrieve and store data

View

asks model for data and presents it

in a user-friendly format

Controller

listens for the user to change data

or state in the UI, notifying the

model or view accordingly

Communication Flow
Taken from http://msdn.microsoft.com/en-us/library/ff649643.aspx

What do you think are the benefits of MVC?

Model View

Controller

http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx

Benefits of MVC
• Organization of code

o Maintainable, easy to find what you need

• Ease of development
o Build and test components independently

• Flexibility
o Swap out views for different presentations of the same data (ex:

calendar daily, weekly, or monthly view)

o Swap out models to change data storage without affecting user

