
Design Patterns
…live and in action!

CSE 331, 10/28/11 TA: Krysta Yousoufian

Housekeeping
• Homework 3: Sunday

• Midterm: Friday

• Questions?

Common Patterns
• Recall from lecture…

• Creational
o Create objects without calling constructor directly

o Singleton: allow only one instance

o Factory: hide constructors

o Prototype: “cloneable” objects

• Structural (wrappers)
o Interact with the “important“ class through a wrapper class

o Adapter: different interface, same functionality

o Decorator: same interface, different fuctionality

o Proxy: same interface, same functionality

• Behavorial
o Interface for communication between objects

o Visitor: traverse sa data structure

Singleton
• One shared instance of a class

• When useful
o Maintaining global state; coordinating among applications

o Often lower-level tasks (e.g. hardware interaction)

• When not useful
o Need to store state/data specific to each use (instance fields)

• Controversial
o Global  hides dependencies, hard to test

o Overused

o Good tool to have, but only use if it’s the right tool (get a second

opinion!)

• Examples: logger, window manager

Implementing Singleton
• Private constructor

• Several options(Effective Java pp. 18+)
o One publicly accessible static instance

• Pros: clarity – obvious that you’re using a shared copy

o One private static instance, accessed with getInstance()

• Pros: flexibility – could reimplement getInstance() to no longer

be Singleton

• Nice style – use for this class unless we tell you otherwise

o Enum

• Pros: safer (harder to break Singleton), provides serialization

• But not how Enum is meant to be used

• Josh Bloch recommends this, but avoid for now unless we tell
you otherwise

Singleton Demo
FileServer / Logger

• Logger.java

• Client.java

• FileServer.java

• IOUtil.java

http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_singleton/Logger.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_singleton/Client.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_singleton/FileServer.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_singleton/IOUtil.java

Factory
• Get new object by calling non-constructor

(getInstance(), valueOf(), …)
o May create a new object or may reuse an old one

• Advantages (Effective Java, pg. 5)
o Can reuse objects

o Can return objects of subtypes

o More descriptive naming than constructors

• Examples
o Boolean.valueOf() – reuse objects

o Collections interface: static methods return private subclasse

Factory Demo
GameFactory / GameRoom

• GameFactory.java

• GameRoom.java

• Game.java

http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/GameFactory.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/GameRoom.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/Game.java

Adapter
• Different interface, same functionality

• Use: translate interface to be compatible with a

different object

Demo: TicTacToe / GameRoom

• TicTacToe.java

• SimpleTicTacToe.java

• Game.java

• GameRoom.java

http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/TicTacToe.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/SimpleTicTacToe.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/Game.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_factory_adapter/GameRoom.java

Proxy
• Same interface – just adds a wrapper

• Uses:
o Support concurrency – e.g. add locks to restrict access to data

structures

o Security – e.g. verify credentials

o …

Visitor
• Traverse a hierarchical data structure (e.g. tree)

• Do something at each step

• Nodes of data structure implement
accept(Visitor v)
o Calls visit(this) and accept(v) on each child

• Visitor implements visit(Node n)
o Does some computation, printing, etc.

• Uses
o “Pretty printers” for trees (e.g. compilers)

Visitor Demo
• PurchaseVisitor.java

• PurchaseNode.java

• VisitorTest.java

http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_visitor/PurchaseVisitor.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_visitor/PurchaseNode.java
http://www.cs.washington.edu/education/courses/cse331/11au/sections/design_patterns/patterns_visitor/VisitorTest.java

