
1 of 4

CSE 331, Spring 2011
Homework Assignment #1: Shopping (50 points)

Due Tuesday, April 5, 2011, 11:30 PM

This program focuses on review of Java, writing a multi-class object-oriented program, and collections. Turn in files

Catalog.java, DiscountedItem.java, Item.java, Purchase.java, ShoppingCart.java, ShopTest.java ,

and mycatalog.txt from the Homework page of the course web site.

You will need to download the support files ShoppingGui.java, ShoppingMain.java, and catalog.txt from the

course web site into your project to run the GUI. Run ShoppingMain to launch the program. Note that input files like

catalog.txt should be placed in your Eclipse project's root folder, the parent of its src/ or bin/ subdirectories.

We will revisit this program in future assignments to modify and improve the code and spec for the classes written here.

Program Description:

In this program you will write a set of supporting classes for a basic shopping
program. The instructor has written the Graphical User Interface that will provide
the "front end" to your program. You are to write the back end (what is sometimes
referred to as the "domain specific code").

The program displays a catalog of items that can be purchased. You can purchase

more than one of a given item. Prices are expressed using real numbers (doubles).

Quantities to purchase are expressed as integers (ints). For example, you can’t buy
2.5 of something.

Some items have a discount when you buy enough of them. For example, Silly
Putty normally costs $3.95 each, but you can buy 10 for $19.99. These items have,
in effect, two prices: a single item price and a bulk item price for a bulk quantity.

When computing the price for a discounted bulk item, apply as many of the bulk
quantity as you can and then use the single item price for any leftovers. For
example, the user is ordering 12 buttons that cost $0.99 each but can be bought in
bulk 10 for $5.00. The first 10 are sold at that bulk price ($5.00) and the two extras
are charged at the single item price ($0.99 each) for a total of $6.98. If the user had
bought 32 buttons, the first 30 would cost $15.00 (3 * $5.00) and the two extras
would be $0.99 each for a total of $16.98.

At the bottom of the window is a checkbox for an overall discount. If this box is
checked, the user is given a 10% discount off the total price when the cart contains
at least 20 total items. This is computed using simple double arithmetic, computing
a price that is 90% of what it would be otherwise if the quantity is large enough.

Classes to Implement:

Your task is to implement the following classes that are used to make this code work:

• Item, a single item that can be purchased

• DiscountedItem, a single item with a bulk discount for high-quantity purchases

• Catalog, a set of all items that are available in the store

• Purchase, a single item to be purchased in a given quantity

• ShoppingCart, the list of all purchases that the user currently wants to make

• ShopTest, a testing program to verify the functionality of the other classes

For full credit, all methods of all classes should run in a constant amount of time (O(1)) regardless of any parameter
value(s) passed, unless otherwise specified. This constraint may affect your choice of implementation and data structures.

2 of 4

Item class:

An Item object stores information about an individual item. It should have the following public behavior.

Method Description

Item(name, price) Constructor that takes the item's name (a string) and its price (a real number) as arguments.

getName() Returns the name of the item as passed to the constructor.

priceFor(quantity) Returns a real number representing the price for a given quantity of the item (an integer).

toString()

Returns a text representation of this item: its name followed by a comma and space followed by
its price. The price should be formatted properly as dollars and cents. For example, your

method might return "Rubik's cube, $9.10".

This is non-trivial because prices that have a different number of digits after the decimal point.

The method String.format can help you to format a real number with exactly 2 digits after

the decimal point, or you may use the NumberFormat.getCurrencyInstance method to
achieve the same effect. See the Java API documentation.

DiscountedItem class:

The DiscountedItem class is a subcategory of Item. A DiscountedItem object stores information about an
individual item that has a bulk discount when purchased in sufficient quantity. It should have the following public

behavior in addition to the behavior of Item.

Method Description

DiscountedItem(name, price,

 bulk quantity, bulk price)
Constructor that takes a name (a string), a single-item price (a real number), a
bulk quantity (an integer), and a bulk price (a real number) as arguments.

toString()

Returns a text representation of this discounted item, consisting of its name,
followed by a comma and space, followed by its price, followed by an extra
space and a parenthesized description that has the bulk quantity, the word "for"

and the bulk price. For example, your method might return "Silly Putty,

$3.95 (10 for $19.99)".

Catalog class:

A Catalog object stores information about all items available for purchase. It has the following public behavior:

Method Description

Catalog(storeName) Constructor that takes a store name (a string) as its argument. The catalog is initially empty.

add(item) Adds the given item to the end of this catalog's collection of items.

getItem(name)
Returns the item, if any, whose name exactly matches the given name. You may assume
that an item has been previously been added to the catalog that has the given name. The
behavior of this method is unspecified if no such item exists in the catalog.

getStoreName() Returns the catalog's store name as passed to the constructor.

iterator()

Returns an iterator over all items in the catalog. The iterator should return the items in the
order that they were originally added to the catalog. (Don't implement your own iterator
class from scratch; ask your catalog's internal data structure for its iterator and return that.)

The Catalog class should also implement the Iterable<Item> interface from java.lang so that a Catalog object

can be used as the target of a "for-each" loop over its items. (The for-each loop internally calls the iterator method on

the catalog and asks the iterator for each item.) See the Java API documentation if you are unfamiliar with Iterable.

3 of 4

Purchase class:

A Purchase object stores information about a purchase order of a particular item: namely, the item itself, and the
quantity desired to be purchased. It should have the following public behavior:

Method Description

Purchase(item, quantity) Constructor that creates a purchase for the given item and given quantity (an integer).

getPrice() Returns the cost to purchase the item at the given quantity.

getQuantity() Returns the quantity for this purchase as passed to the constructor.

isEmpty() Returns whether this purchase has a quantity of 0 (true if so).

matches(purchase)
Returns whether this purchase is for the same item as the given other purchase (true if

so, false if not).

ShoppingCart class:

A ShoppingCart object stores information about the customer's overall order, implemented as a collection of

Purchases. The internal order of the purchases in the cart is unspecified. It should have the following public behavior:

Method Description

getDiscountPercentage() This static method returns the percentage to discount carts that contain enough items (10).

getDiscountQuantity() This static method returns the minimum quantity where a discount will apply to carts (20).

ShoppingCart() Constructor that creates an empty shopping cart of purchases.

add(purchase)

Adds a purchase to the shopping cart, replacing any previous purchase for this item with
the new purchase. For example, a user at one time might request to purchase 3 of some
item and later change the request to purchase 5 of that item. The purchase for 5 replaces
the purchase for 3. The user is not requesting 8 of the item in making such a change. The

add method might be passed a purchase with a quantity of 0. This indicates that the client
doesn't want any purchase to be added; instead, the client wants any existing purchase for
that item to be removed. This method should run in no worse than O(n) time.

clearAll() Removes all purchases from the cart.

getTotal()
Returns the total cost of all the purchases in the shopping cart. This method should run in
no worse than O(n) time.

hasDiscount()
Returns whether or not this cart should get a 10% discount when it contains 20 total items

or more. Initially false, but can be changed to true by a call to setDiscount.

setDiscount(value)
Sets whether or not this cart should get a 10% discount when it contains 20 total items or

more (a parameter value of true means there is a discount, false means no discount).

totalQuantity()
Returns the total quantity from all combined purchases in this cart. This method should
run in no worse than O(n) time.

ShopTest class:

It's important to test your code incrementally as you are writing it. Therefore you will turn in a ShopTest class that
contains a small amount of code to test your other classes. The class may contain any contents you like, so long as it
constructs objects of at least 3 of your other classes and calls some of their methods. The GUI does not call every method
of every class nor call them with every possible parameter value, so we encourage you to try testing various behavior.

Your ShopTest class should either have a main method that launches your testing code, or it can be a JUnit test case file.
(Since we have not covered JUnit yet in CSE 331, you aren't expected to know that syntax. But if you do, you may use
it.) You will not be graded on the quality or coverage of your tests; we just want to encourage good coding habits.

4 of 4

Implementation Details:
Do not add any other public methods to these classes, although you can add your own private methods. You are allowed

to define a toString method in any of these classes (you might find that helpful in testing and debugging your code).

Use your testing code to develop the classes in stages rather than all at once. When your classes are working, combine
them with the provided classes developed by the instructor to make sure that they work properly.

Assume valid parameters. You may assume that all parameter values passed to all methods and constructors are valid:

that prices are always greater than 0, quantities are non-negative, and all objects are non-null.

Your classes are to exactly reproduce the format and overall prices shown in the two example screenshots. You will have
to run the GUI and enter the individual quantities from the screenshots to verify that your classes are working correctly.
A sample solution will be posted that you can run to verify the behavior your program should have. The sample solution
might contain bugs; if its behavior differs from this specification, follow the spec, not the sample solution.

Creative Aspect: mycatalog.txt
Along with your program, turn in a file mycatalog.txt that represents another catalog of items to be purchased. The
file's format should match the provided catalog.txt, containing one item per line, with name / price separated by commas.

Bottle o' Bubbles,0.99

Nintendo Wii system,389.99

Discounted items contain the bulk quantity and bulk price on the same line with additional commas. For example:

Silly Putty,3.95,10,19.99

Silly String,3.50,10,14.95

For full credit, your file should contain at least 8 unique items and at least one of each kind of item (discounted and not).

Style and Design Guidelines:
Some of your classes will use collections internally to store data. Part of your grade will be based on whether you choose
appropriate collections to match the expectations outlined in this spec, such as performance and data ordering.

Redundancy is a major grading focus of every assignment for this course. Some methods are similar in behavior or
based off of each other's behavior. You should avoid repeated logic as much as possible. Your class may have other

methods besides those specified, but any other methods you add should be private.

You should use constants where appropriate to avoid "magic numbers" (fixed values used in your code). Policy data such
as specific values used to decide ranges or particular costs are especially good candidates to be made into constants.

Follow good general style such as: making fields private, avoiding unnecessary fields (don't declare variables as fields
that could be declared locally); initializing fields in constructors, rather than as they are declared; declaring collections

using interface types (e.g. List rather than ArrayList); appropriately using control structures like loops and if/else;
properly using indentation, good variable names and types; and not having any lines of code wider than 100 characters.

Comment all of your files descriptively in your own words at the top of each class, each method/constructor, and on
complex sections of your code. Comments at the top of a class should identify yourself, the assignment / course / section,
and should describe the overall purpose of the class. Method header comments should at a minimum explain the method's
behavior, parameters, and return values as appropriate. For reference, our solution contains roughly 110 "substantive

lines" (which excludes things like blank lines, comments, and } brace lines) according to the class Indenter Tool, though
this number is just provided as a sanity check; you do not need to match it or be close to it to get full credit.

Grading:
Part of your program's score will come from its "external correctness", or whether your code's behavior matches exactly
what is expected. Programs that do not compile receive zero external correctness points. The turnin page informs you
whether your code compiles successfully. Read its output carefully; if errors are shown, correct your code and resubmit.

The rest of your program's score will come from its "internal correctness." Internal correctness measures whether your
source code follows the stylistic guidelines indicated in this document.

