
1

CSE 331

Comparing objects;

Comparable, compareTo, and

Comparator

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer,

2

Comparing objects

• Operators like < and > do not work with objects in Java.

� But we do think of some types as having an ordering (e.g. Dates).

� (In other languages, we can enable <, > with operator overloading.)

• natural ordering: Rules governing the relative placement of all

values of a given type.

� Implies a notion of equality (like equals) but also < and > .

� total ordering: All elements can be arranged in A ≤ B ≤ C ≤ ... order.

• comparison function: Code that, when given two values A and B of a

given type, decides their relative ordering:

� A < B, A == B, A > B

3

The Comparable interface

• The standard way for a Java class to define a comparison function

for its objects is to implement the Comparable interface.

public interface Comparable<T> {

public int compareTo(T other);

}

• A call of A.compareTo(B) should return:

a value < 0 if A comes "before" B in the ordering,

a value > 0 if A comes "after" B in the ordering,

or exactly 0 if A and B are considered "equal" in the ordering.

• Effective Java Tip #12: Consider implementing Comparable.

4

compareTo example
public class Point implements Comparable<Point> {

// sort by x and break ties by y
public int compareTo(Point other) {

if (x < other.x) {
return -1;

} else if (x > other.x) {
return 1;

} else if (y < other.y) {
return -1; // same x, smaller y

} else if (y > other.y) {
return 1; // same x, larger y

} else {
return 0; // same x and same y

}
}

// subtraction trick:
// return (x != other.x) ? (x - other.x) : (y - other.y);

}

5

compareTo and collections

• Java's binary search methods call compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};

int index = Arrays.binarySearch(a, "dan"); // 3

• Java's TreeSet/Map use compareTo internally for ordering.

� Only classes that implement Comparable can be used as elements.

Set<String> set = new TreeSet<String>();

for (int i = a.length - 1; i >= 0; i--) {

set.add(a[i]);

}

System.out.println(s);

// [al, bob, cari, dan, mike]

6

Flawed compareTo method
public class BankAccount implements Comparable<BankAccount> {

private String name;

private double balance;

private int id;

...

public int compareTo(BankAccount other) {

return name.compareTo(other.name); // order by name

}

public boolean equals(Object o) {

if (o != null && getClass() == o.getClass()) {

BankAccount ba = (BankAccount) o;

return name.equals(ba.name)

&& balance == ba.balance && id == ba.id;

} else {

return false;

}

}

}

• What's bad about the above? Hint: See Comparable API docs.

7

The flaw
BankAccount ba1 = new BankAccount("Jim", 123, 20.00);

BankAccount ba2 = new BankAccount("Jim", 456, 984.00);

Set<BankAccount> accounts = new TreeSet<BankAccount>();

accounts.add(ba1);

accounts.add(ba2);

System.out.println(accounts); // [Jim($20.00)]

• Where did the other account go?

� Since the two accounts are "equal" by the ordering of compareTo,

the set thought they were duplicates and didn't store the second.

8

compareTo and equals

•compareTo should generally be consistent with equals.

� a.compareTo(b) == 0 should imply that a.equals(b) .

• from Comparable Java API docs:

� ... sorted sets (and sorted maps) without explicit comparators behave

strangely when they are used with elements (or keys) whose natural

ordering is inconsistent with equals. In particular, such a sorted set (or

sorted map) violates the general contract for set (or map), which is

defined in terms of the equals method.

� For example, if one adds two keys a and b such that (!a.equals(b) &&

a.compareTo(b) == 0) to a sorted set that does not use an explicit

comparator, the second add operation returns false (and the size of

the sorted set does not increase) because a and b are equivalent from

the sorted set's perspective.

9

What's the "natural" order?
public class Rectangle implements Comparable<Rectangle> {

private int x, y, width, height;

public int compareTo(Rectangle other) {

// ...?

}

}

• What is the "natural ordering" of rectangles?

� By x, breaking ties by y?

� By width, breaking ties by height?

� By area? By perimeter?

• Do rectangles have any "natural" ordering?

� Might we ever want to sort rectangles into some order anyway?

10

Comparator interface
public interface Comparator<T> {

public int compare(T first, T second);

}

• Interface Comparator is an external object that specifies a

comparison function over some other type of objects.

� Allows you to define multiple orderings for the same type.

� Allows you to define a specific ordering for a type even if there is no

obvious "natural" ordering for that type.

11

Comparator examples
public class RectangleAreaComparator

implements Comparator<Rectangle> {

// compare in ascending order by area (WxH)

public int compare(Rectangle r1, Rectangle r2) {

return r1.getArea() - r2.getArea();

}

}

public class RectangleXYComparator

implements Comparator<Rectangle> {

// compare by ascending x, break ties by y

public int compare(Rectangle r1, Rectangle r2) {

if (r1.getX() != r2.getX()) {

return r1.getX() - r2.getX();

} else {

return r1.getY() - r2.getY();

}

}

}

12

Using Comparators

•TreeSet and TreeMap can accept a Comparator parameter.

Comparator<Rectangle> comp = new RectangleAreaComparator();

Set<Rectangle> set = new TreeSet<Rectangle>(comp);

• Searching and sorting methods can accept Comparators.

Arrays.binarySearch(array, value, comparator)

Arrays.sort(array, comparator)

Collections.binarySearch(list, comparator)

Collections.max(collection, comparator)

Collections.min(collection, comparator)

Collections.sort(list, comparator)

• Methods are provided to reverse a Comparator's ordering:

Collections.reverseOrder()

Collections.reverseOrder(comparator)

13

Using compareTo

• compareTo can be used as a test in an if statement.

String a = "alice";

String b = "bob";

if (a.compareTo(b) < 0) { // true

...

}

if (a.compareTo(b) == 0) { ...if (a == b) { ...

if (a.compareTo(b) != 0) { ...if (a != b) { ...

if (a.compareTo(b) >= 0) { ...if (a >= b) { ...

if (a.compareTo(b) > 0) { ...if (a > b) { ...

if (a.compareTo(b) <= 0) { ...if (a <= b) { ...

if (a.compareTo(b) < 0) { ...if (a < b) { ...

ObjectsPrimitives

14

compareTo tricks

• subtraction trick - Subtracting related numeric values produces the

right result for what you want compareTo to return:

// sort by x and break ties by y
public int compareTo(Point other) {

if (x != other.x) {

return x - other.x; // different x
} else {

return y - other.y; // same x; compare y
}

}

� The idea:

• if x > other.x, then x - other.x > 0

• if x < other.x, then x - other.x < 0

• if x == other.x, then x - other.x == 0

� NOTE: This trick doesn't work for doubles (but see Math.signum)

15

compareTo tricks 2

• delegation trick - If your object's fields are comparable (such as

strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public int compareTo(Employee other) {

return name.compareTo(other.getName());
}

• toString trick - If your object's toString representation is

related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo(Date other) {

return toString().compareTo(other.toString());
}

