
1

CSE 331

Programming by contract:

pre/post conditions; Javadoc

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

From HW1 spec

• "Assume valid parameters. You may assume that all parameter

values passed to all methods and constructors are valid: that prices

are always greater than 0, quantities are non-negative, and all

objects are non-null."

• What do you think of this?

� In real production code, you usually

cannot make these kinds of sweeping

assumptions or demands on how

clients use your code.

� Well-specified code will be more

granular in how it handles misusage.

3

Effective Java Tip #38

• Tip #38: Check parameters for validity.

� If your method has a notion that some values are "invalid" and knows

how to identify those values early in the code.

� If it's not very expensive to check them.

• But...

� How does the client know which parameters are / aren't checked?

� What should you do if they aren't valid?

� How does the client know what you're going to do if they're invalid?

4

Programming by contract

• programming by contract (design by contract): Defining formal,

precise and verifiable interface specifications for software

components, which extend the ordinary definition of abstract data

types with preconditions, postconditions and invariants.

• Three key questions that the designer must repeatedly ask:

� What does this code expect?

� What does it guarantee?

� What does it maintain?

5

Preconditions

• precondition: Something assumed to be true at the start of a call.

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int get(int index) {

return elementData[index];

}

� Stating a precondition doesn't "solve" the problem of users passing

improper indexes, but it at least documents our decision and warns the

client what not to do.

6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

6

Choosing preconditions

• Examples of poorly chosen preconditions:

� Stating the obvious:

• pre: String s is a string! The computer has enough memory to run!

� Making up for a lazy or poor implementation:

• for pow: Exponent can't be negative; can only compute positive powers.

• for list.isSorted: List shouldn't contain any duplicates because our code

messes up in that case and returns the wrong answer.

� Things that clients cannot check, avoid, or ensure:

• for stack.push: Stack's internal array capacity must be >= stack size.

• for a download: If it starts, the whole file will arrive successfully.

• Horstmann OOD Tip 3.6.1: The client must be able to check the

preconditions of a method before calling it.

7

Precondition violations

• Formally, if a client violates a precondition, (by default)

the object does not specify what will happen.

� It makes no promise that the method will work successfully.

• might do nothing

• might return an unusual value or "error" value (null, 0, -1, "", etc.)

• might throw an exception

• might get stuck in an infinite loop

• might leave the object in a corrupt state, save the wrong file, etc.

� What is the best way to handle a precondition violation?

8

Approach 1: return error value

• can handle a precondition violation by returning a special value:

// Returns the element at the given index.

// Precondition: 0 <= index < size
public int get(int index) {

if (index < 0 || index >= size) {

return -1;
} else {

return elementData[index];

}

}

� Is this a good or bad approach?

• Bad. The -1 returned is indistinguishable from a -1 in the actual data.

• Bad. The client might not

9

Approach 2: throw exception

• can handle a precondition violation by throwing an exception:

// Returns the element at the given index.

// Precondition: 0 <= index < size
public int get(int index) {

if (index < 0 || index >= size) {

throw new IndexOutOfBoundsException(index);
} else {

return elementData[index];

}

}

� fail-fast: Client learns about the problem immediately and can fix it.

Passing a bad value usually indicates a bug in the client, so this is good.

10

Exceptions in the contract

• from java.util.Stack : public E pop()

� Removes the object on top of this stack and returns it.

� Returns: The object at the top of this stack.

� Throws: EmptyStackException - if stack is empty.

• Most preconditions are things the stack assumes to be true.

� (and, as far as the client knows, that are not checked by the stack)

� If client violates a precondition, stack could do anything.

• In this case the stack documents a predictable behavior (throw) in

response to the empty stack condition.

� So we say that the exception is part of the contract .

� If you change it (say, to return null), you have changed the contract.

11

Preconditions and private

• Private internal methods do not usually test preconditions:

// Helper does the real work of removing an item.

private void removeHelper(int index) {
// should I check 0 <= index < size here?
for (int i = index; i < size - 1; i++) {

elementData[i] = elementData[i + 1];

}

elementData[size - 1] = 0;

size--;

}

• Why not?

� Since the method can only be called internally, the class author can

make sure to call it only when the preconditions hold.

� If any check at all is made, make it an assert statement (see next).

12

Precondition example

• Binary search on an int[] : from Java API

"Searches the specified array of ints for the specified value using the binary search

algorithm. The array must be sorted (as by the sort method, above) prior to making this

call. If it is not sorted, the results are undefined. ..."

• Why doesn't Sun just check whether the array is sorted? :

� Idea #1: If it isn't sorted, sort it.

� Idea #2: If it isn't sorted, throw an exception.

� Sort is costly (takes O(n log n) or worse; search is O(log n)).

� Even checking to see whether the array is sorted is costly (O(n)); omitting this

check and assuming it to be true makes binary search run much faster.

� Sort modifies the input array; binarySearch would have a side effect.

• So how do we catch bugs where the client violates this precondition? ...

13

Checking preconditions

• assertion: A logical statement that can be made about a program at

a particular point in time and is expected to be true.

� "At this point in the code, it should be the case that x > 0."

• Java and other languages supply an assert statement.

� Assert statements can be enabled/disabled; they are off by default.

� Assertions should be used to check your basic assumptions that should

never fail; they uncover things that should not have happened!

• For example, verify preconditions when testing/debugging.

� When an assertion fails, this is considered an error on the part of the

developer and should be fixed immediately.

• Exceptions in the contract are more common.

14

Assertions in Java
assert condition ;

assert condition : message;

• enabling assertions

� java -enableassertions ClassName

(or tell your editor/IDE to enable them)

• Assertion code is zero-cost when disabled; very important!

� In C/C++, assert is a compile-time thing.

� In Java, you can selectively en/disable assertions at runtime.

15

Assert statement example
// Returns index of n in a, or -1 if not found.

// precondition: a is in sorted order.
public static int binarySearch(int[] a, int n) {

assert isSorted(a) : "Array must be sorted";
...

}

// Returns true if the given array is sorted.

public static boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i + 1]) {

return false;

}

}

return true;

}

16

Postconditions

• postcondition: Something your method promises will be true at the

end of its execution, if all preconditions were true at the start.

// Makes sure that this list's internal array is large

// enough to store the given number of elements.

// Precondition: capacity >= 0

// Postcondition: elementData.length >= capacity
public void ensureCapacity(int capacity) {

while (capacity > elementData.length) {

elementData = Arrays.copyOf(elementData,

2 * elementData.length);

}

}

� If your method states a postcondition, clients should be able to rely on

that statement being true after they call the method.

17

Javadoc comments
/**

* description of class/method/field/etc.
*

* @tag attributes
* @tag attributes
* ...

* @tag attributes
*/

• Javadoc comments: Special comment syntax for describing detailed

specifications of Java classes and methods.

� Put on all class headers, public methods, constructors, public fields, ...

• Main benefit: Tools can turn Javadoc comments into HTML spec pages.

� Eclipse and other editors have useful built-in Javadoc support.

• Main drawback: Comments can become bulky and harder to read.

18

Javadoc tags

• on a method or constructor:

• on a class header:

allows a subclass method to copy Javadoc

comments from the superclass version

{@inheritDoc}

for showing Java code in the comments{@code sourcecode}

describes an exception that may be thrown

(and what would cause it to be thrown)

@throws ExceptionType reason

describes what value will be returned@return description

describes a parameter@param name description

descriptiontag

class's version number, in any format@version number

author of a class@author name

descriptiontag

19

Javadoc example
/**
* Each BankAccount object models the account information for
* a single user of Fells Wargo bank.
* @author James T. Kirk
* @version 1.4 (Aug 9 2008)
*/

public class BankAccount {
/** The standard interest rate on all accounts. */
public static final double INTEREST_RATE = 0.03;
...

/**
* Deducts the given amount of money from this account's
* balance, if possible, and returns whether the money was
* deducted successfully (true if so, false if not).
* If the account does not contain sufficient funds to
* make this withdrawal, no funds are withdrawn.
*
* @param amount the amount of money to be withdrawn
* @return true if amount was withdrawn, else false
* @throws IllegalArgumentException if amount is negative
*/

public boolean withdraw(double amount) {
...

}
}

20

Javadoc output as HTML

• Java includes tools to convert Javadoc comments into web pages

� from Terminal: javadoc -d doc/ *.java

� Eclipse has this built in: Project → Generate Javadoc...

� The actual Java API

spec web pages are

generated from Sun's

Javadoc comments on

their own source code:

21

Javadoc HTML example

• from java.util.List interface source code:

/**

* Returns the element at the specified position

* in this list.

* <p>This method is not guaranteed to run

* in constant time. In some implementations it may

* run in time proportional to the element position.

*

* @param index index of element to return; must be

* non-negative and less than size of this list

* @return the element at the specified position

* @throws IndexOutOfBoundsException if the index is

* out of range

* ({@code index < 0 || index >= this.size()})

*/

public E get(int index);

� Notice that HTML tags may be embedded inside the comments.

22

Javadoc enums, constants

• Each class constant or enumeration value can be commented:

/**

* An instrument section of a symphony orchestra.

* @author John Williams

*/

public enum OrchestraSection {

/** Woodwinds, such as flute, clarinet, and oboe. */
WOODWIND,

/** Brass instruments, such as trumpet. */
BRASS,

/** Percussion instruments, such as cymbals. */
PERCUSSION,

/** Stringed instruments, such as violin and cello. */
STRING;

}

23

What goes in @param/return

• Don't repeat yourself or write vacuous comments.
/** Takes an index and element and adds the element there.

* @param index index to use
* @param element element to add
*/

public boolean add(int index, E element) { ...

• better:
/** Inserts the specified element at the specified

* position in this list. Shifts the element currently at

* that position (if any) and any subsequent elements to

* the right (adds one to their indices). Returns whether

* the add was successful.

* @param index index at which the element is to be inserted
* @param element element to be inserted at the given index
* @return true if added successfully; false if not
* @throws IndexOutOfBoundsException if index out of range

* ({@code index < 0 || index > size()})

*/

public boolean add(int index, E element) { ...

24

Your Javadoc is your spec

• Whenever you write a class to be used by clients, you should write

full Javadoc comments for all of its public behavior.

� This constitutes your specification to all clients for your class.

� You can post the generated HTML files publicly for clients to view.

� Common distribution of a library of classes:

• binaries (.class files, often packaged into an archive)

• specification (Javadoc .html files, or a public URL to view them)

� Eclipse uses Javadoc for auto-completion.

• Effective Java Tip #44:

Write Javadoc comments for all

exposed API elements.

(anything that is non-private)

25

Javadoc and private

• Private internal methods do not need Javadoc comments:

/** ... a Javadoc comment ... */

public void remove(int index) { ... }

// Helper does the real work of removing
// the item at the given index.
private void removeHelper(int index) {

for (int i = index; i < size - 1; i++) {

elementData[i] = elementData[i + 1];

}

elementData[size - 1] = 0;

size--;

}

� Private members do not appear in the generated HTML pages.

26

Custom Javadoc tags

• Javadoc doesn't have tags for pre/post, but you can add them:

� By default, these tags won't show up in the generated HTML. But...

notes a postcondition in API documentation;

describes a condition that is guaranteed to be

true at the end of the method's functionality,

so long as all preconditions were true at the

start of the method

@post condition

(or @postcondition)

notes a precondition in API documentation;

describes a condition that must be true for the

method to perform its functionality

@pre condition

(or @precondition)

descriptiontag

27

Applying custom Javadoc tags
� from Terminal: javadoc -d doc/

-tag pre:cm:"Precondition:"

-tag post:cm:"Postcondition:" *.java

� in Eclipse: Project → Generate Javadoc... → Next → Next →

in the "Extra Javadoc options" box, type:

-tag pre:cm:"Precondition:" -tag post:cm:"Postcondition:"

� The generated Java API web pages

will now be able to display pre

and post tags properly!

