
1

CSE 331

Guidelines for Class Design

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/



2

What is class design?

• class design: Deciding the contents of a known class (or set of 

classes) that will effectively solve a given problem.

� i.e. Classes are told to you (by designer, instructor, etc.) but you have 

to decide the details of what goes into each class.

� Differs from OO design, which also involves coming up with exactly 

what classes are needed in the first place.

• Class design references:

� Object-Oriented Design Heuristics, by A. Riel

� Object-Oriented Design and Patterns, by C. Horstmann

� Effective Java, by J. Bloch



3

Method design

• A method should do only one thing, and do it well.

� A method should not both access and mutate, except in rare cases.

• EJ Tip #40: Design method signatures carefully.

• Avoid long parameter lists  (> 4 parameters).

� If the method needs 7 parameters, maybe something's wrong.

� Especially prone to errors if the parameters are all the same type.

� Avoid methods that take lots of boolean "flag" parameters.

• EJ Tip #41: Use overloading judiciously.

� overloading: Two methods with the same name  (different params).

� Can be useful, but don't overload with the same number of parameters 

and think about whether the methods really are related.



4

Field design

• A variable should be made into a field if and only if:

� It is part of the inherent internal state of the object.

� It has a value that retains meaning throughout the object's life.

� Its state must persist past the end of any one public method.

• All other variables can and should be local to the methods in which 

they are used.

� Fields should not be used to avoid parameter passing.

� Not every constructor parameter always needs to be a field.

� Sometimes we make exceptions for efficiency (LinkedList size).

� But do not prematurely optimize.  "Caching" values is often bad.



5

Constructor design

• Constructors should take all arguments necessary to initialize the 

object's state; no more, no less.

� Don't make the client pass in things they shouldn't have to.

� Example:  public Student(String name, int sid)

• Why not pass in the student's courses?

• Object should be completely initialized after constructor is done.

� Shouldn't need to call other methods to "finish" initializing it.

� NOT: public Student(String name), then calling setSid(sid).

• Minimize the work done in a constructor.

� A constructor should not do any heavy work, such as calling println

to print state, or performing expensive computations.

� If an object's creation is heavyweight, use a static method instead.



6

Naming

• Choose good names for classes and interfaces.

� Class names should be nouns.

• Watch out for "verb + er" names, e.g. Manager, Scheduler, ShapeDisplayer.

• Interface names often end in -able or -ible, e.g. Iterable, Comparable.

� Method names should be verb phrases.

• Accessors methods can be nouns such as size or totalQuantity

• Most accessors should be named with "get" or "is" or "has".

• Most mutators should be named with "set" or similar.

• Choose affirmative, positive names over negative ones.

� isSafe, not isUnsafe.  isEmpty, not hasNoElements.

• EJ Tip #56: Adhere to generally accepted naming conventions.



7

Class design "C" words

Good things that you should strive for when designing classes:

• 1) cohesion: Every class should represent a single abstraction.

• 2) completeness: Every class should present a complete interface.

• 3) clarity: Interface should make sense without confusion.

• 4) convenience: Provide simple ways for clients to do common tasks.

• 5) consistency: In names, param/returns, ordering, and behavior.

A bad thing that you should try to minimize:

• 6) coupling: Amount and level of interaction between classes.



8

1) Completeness

• completeness: Every class should present a complete interface.

� Leaving out important methods makes a class cumbersome to use.

� counterexample: A collection with add but no remove.

� counterexample: A Tool object with a setHighlighted method 

to select it, but no setUnhighlighted method to deselect it.

� counterexample: Date class has no date-arithmetic features.

� Related: Objects that have a natural ordering should implement 

Comparable.  Objects that might have duplicates should implement 

equals.  Almost all objects should implement toString.



9

Open-Closed Principle

• open-closed principle: Software entities should be open for 

extension, but closed for modification.

� When features are added to your system, do so by adding new classes 

or reusing existing ones in new ways.

� If possible, don't make change by modifying existing ones.

• Reason: Existing code works; changing it can introduce bugs and errors.

• Related: Code to interfaces, not to classes.

� e.g. accept a List parameter, not ArrayList or LinkedList.

� EJ Tip #52: Refer to objects by their interfaces.



10

2) Cohesion

• cohesion: Every class should represent a single abstraction.

� It should represent one thing (not several) and do it well.

� Keep related data and behavior in one place together.

� counterexample: StudentAppointmentScheduler

that keeps track of all info about a student and his/her

appointments and schedules them.

� counterexample: PokerGame class that manages all of the

players, the chips on the table, the current betting round,

computer AI strategies, ...

• Some objects lack cohesion because they are insignificant.

� Often insignificant objects are better done as enums.

� Examples: Card suit;  Gender;  Day of the week



11

The Expert pattern

• expert pattern: The class that contains the majority of the data 

needed to perform a task should perform the task.

� counterexample: A class with lots of getters (accessors), not a lot of 

methods that actually do work.

• Relies on other classes to "get" the data and process it externally.

• Ostrachan's Law: "Ask not what you can do with an object;

ask what an object can do for itself."

• Avoid duplication.

� Only one class should be responsible for maintaining a set of data, 

even if that data is used by many other classes.



12

3) Clarity;  4) Convenience

• clarity: An interface should make sense without creating confusion.

� Even without fully reading the spec/docs, a client should largely be 

able to follow his/her natural intuitions about how to use your class.

� counterexample: Iterator's remove method

• convenience: Provide simple ways for clients to do common tasks.

� If you have a size / indexOf, include isEmpty / contains, too.

� counterexample: Java arrays  (no behavior)

� counterexample: System.in sucks; finally fixed with Scanner

� counterexample: Collections class has to fix flaws in Lists



13

5) Consistency

• consistency: A class or interface should be consistent with respect 

to names, parameters/returns, ordering, and behavior.

� Use a similar naming scheme; accept parameters in the same order.

• bad: setFirst(int index, String value)  and  setLast(String value, int index) .

� counterexample: Date/GregorianCalendar use 0-based months.

� counterexample: String equalsIgnoreCase, compareToIgnoreCase;

but regionMatches(boolean ignoreCase).

� counterexample: String .length(),  array .length,  collection .size() .



14

Law of Demeter

• Law of Demeter: An object should know as little as possible about 

the internal structure of other objects with which it interacts.

� An object, especially an "immutable" one, should not expose its 

representation by returning a reference to its internal goodies.

• sometimes called "shallow immutability" if not done properly

• representation exposure: When an object allows other code to 

examine or modify its internal data structures.  (A bad thing.)

• If your object has an internal collection:

� Don't return it!  Or return a copy, or an immutable wrapper.

• If your (immutable?) object has mutable objects as fields:

� Don't let clients access them!  Copy them if sent in from outside.



15

Law of Demeter violation

• bad: general.getColonel().getMajor(m).getCaptain(cap)
.getSergeant(ser).getPrivate(name).digFoxHole();

� "inappropriate intimacy": too-tight chain of coupling between classes

• better: general.superviseFoxHole(m, cap, ser, name);

• an object should send messages only to the following:

� 1. itself (this)

� 2. its instance variables

� 3. method's parameters

� 4. any object it creates

� 5. any object returned by a call to one of this's methods

� 6. any objects in a collection of the above

• notably absent: objects returned my messages sent to other objects



16

6) Coupling

• coupling: Amount of interaction between classes/parts of a system.

� To simplify, split design into parts that don't interact much.

• Coupling leads to complexity

• Complexity leads to confusion

• Confusion leads to suffering!

MY

FINAL

PROJECT

MY

FINAL PROJECT

MY

FINECT PROJAL

An application
A poor decomposition

(parts strongly coupled)

A better decomposition

(parts weakly coupled)



17

Invariants

• class invariant: An assertion that is true about an object or class 

throughout its lifetime.

� e.g. A BankAccount's balance will never be negative.

• Think carefully about what invariants are important for your class.

� State them in your documentation, and enforce them in your code.

• What invariants are there on the state of these classes?

� Time / Course (HW2)

� Item / Purchase / ShoppingCart (HW1)

� ArrayList / HashMap



18

Documenting a class

• Keep internal and external documentation separate.

� external: /** ... */ Javadoc atop class and methods.

• Describes things that clients need to know about the class.

• Should be specific enough to exclude unacceptable implementations, but 

general enough to allow for all correct implementations.

• Includes all pre/postconditons and class invariants.

� internal: // comments inside method bodies.

• Describes details of how the code is implemented.

• Information that clients wouldn't and shouldn't need, but a fellow 

developer working on this class would want.

� Missing either of these types of documentation is poor style.



19

The role of documentation

• Kernigan and Plauger on role of documentation:

� 1. If a program is incorrect, it matters little what the docs say.

� 2. If documentation does not agree with code, it is not worth much.

� 3. Consequently, code must largely document itself.  If not, rewrite the 

code rather than increasing the documentation of the existing complex 

code.  Good code needs fewer comments than bad code.

� 4. Comments should provide additional information from the code 

itself.  They should not echo the code.

� 5. Mnemonic variable names and labels, and a layout that emphasizes 

logical structure, help make a program self-documenting.



20

Static vs. non-static design

• What members should be static?

� members that are related to an entire class

� not related to the data inside a particular object of that class’s type

� key Q: "Should I have to construct an object just to call this method?"

• Examples:

� Time.fromString

� Math.pow

� Calendar.getInstance

� NumberFormatter.getCurrencyInstance

� Arrays.toString?   Collections.sort?



21

Public vs. private design

• Strive to minimize the public interface of the classes you write.

� (while still adhering to the preceding design principles)

� Clients like classes that are simple to use and understand.

• Achieve a minimal public interface by:

� Removing unnecessary methods.

� Making everything private unless absolutely necessary.

� Pulling out unrelated behavior into a separate class.

• public static constants are okay if declared final.

� But still better to have a public static method to get the value; why?



22

Choosing types

• Numbers: Favor int and long for most numeric computations.

� EJ Tip #48: Avoid float and double if exact answers are required.

� Classic example: Representing money  (round-off is bad here)

• Favor the use of collections (e.g. lists) over arrays.

• Strings are often overused since much data comes in as text.

• Consider use of enums, even with only 2 values.

� Bad: oven.setTemp(97, true);   // Celsius

� Good: oven.setTemp(97, Temperature.CELSIUS);

• Wrapper types should be used minimally  (usually with collections).

� EJ Tip #49: Prefer primitive types to boxed primitives.

• Bad: public Counter(Character ch)



23

View independence

• Confine user interaction to a core set of "view" classes and isolate 

these from the classes that maintain the key system data.

� e.g. ShoppingMain,  ScheduleGUI

• Do not put println statements in your core classes.

� This locks your code into a text representation.

� Makes it less useful if the client wants a GUI, a web app, etc.

• Instead, have your core classes return data that can be displayed by 

the view classes.

� Bad: public void printMyself()

� Good: public String toString()



24

Design exercise

• Suppose we are writing a birthday-reminder app and we've decided 

that it needs the following classes:

� Date: Represents a particular day on which birthdays can fall.

� Birthdays: Represents all people whose birthdays I want to remember.

� What fields do they have?

� What constructors do they have?

� What methods do they provide?

• static?

� Is there anything we can leave out?

� What invariants should we guarantee?


