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Specifications

• specification: A set of requirements agreed to by the user and the 

manufacturer of a software unit or product.

� Describes the client and implementer's expectations of each other.

• In object-oriented design, a class's spec describes all publicly visible 

behavior or attributes of that class.

� the class's superclass and interfaces implemented (if any)

� constructors

� methods

� public constants or fields (if any)

� nested / inner types

� any assumptions or guarantees made by the class



3

Benefits of specs

• Specs provide abstraction:

� procedural abstraction (describe methods' behavior, not code)

� data abstraction (describe classes' functionality, not implementation)

• Specs facilitate simplicity by two-way isolation:

� Isolate client from implementation details

� Isolate implementer from how the part is used

� Discourages implicit, unwritten expectations

• Specs facilitate change:

� The spec, rather than the code, gets "frozen" over time.

How is a spec written down and documented?
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Code as spec (bad)

• The class's author might say, "To understand how my class works,

just look at its code."  What's wrong with this?

public boolean subList(List<E> src, List<E> part) {

int part_index = 0;

for (E element : src) {

if (element.equals(part.get(part_index))) {

part_index++;

if (part_index == part.size()) {

return true;

}

} else {

part_index = 0;

}

}

return false;

}

� Too much detail!  Client only cares what it does, not how it does it.
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Interface as spec (bad)

• The class's author might say, "To understand how my class works,

just look at its public interface."  Is this good or bad?

public interface List<E> {

public int get(int index);

public void set(int index, E value);

public void add(E value);

public void add(int index, E value);

...

public boolean subList(List<E> src, List<E> part);

}

� Not enough detail!  Interface describes only the syntax, but the client 

also needs to understand in detail the semantics (behavior).
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Comments as spec

• Comments are essential to properly specifying behavior.

� But many comments are informal and incomplete:

// checks to see if part appears within src

public boolean subList(List<String> src, List<String> part) {

• In what ways are the above comments inadequate?

� Must part's elements appear consecutively, in the same order?

� What if src is null?  What if part is null?

� What if either list is empty?  What if both are empty?

� What is the expected runtime of the method?

� What value does it return if part is found, versus if it isn't?

(arguably obvious, but not stated very clearly in the comments)
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What is a better comment?

• If the previous comment is inadequate, is this one a better choice?

// This method has a for loop that scans the "src" list from 

// beginning to end, building up a match for "part", and

// resetting that match every time that a non-matching

// element is found.  At the end, it returns false if ...

public boolean subList(List<E> src, List<E> part) {

� The above comments describe too many implementation details.

� It is possible to describe behavior thoroughly without describing every 

detail of the code used to implement that behavior.
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Spec by documentation

• The following comment header describes the behavior in detail:

/** Returns whether all elements of part appear

* consecutively within src in the same order.

* (If so, returns true;  otherwise, returns false.)

* src and part cannot be null.

* If src is an empty list, always returns false.

* Otherwise, if part is an empty list, always returns true.

* ... */

public boolean subList(List<String> src, List<String> part) {

� Note that it does not describe the code inside the method.

• Only describes what the method's externally visible behavior (return value) 

will be, based on its externally supplied parameters.
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Spec exercise

• Suppose a method M takes an integer arg as an argument

� Spec 1: "returns an integer equal to its argument"

� Spec 2: "returns a non-negative integer equal to its argument"

� Spec 3: "returns an integer ≥ its argument"

� Spec 4: "returns an integer that is divisible by its argument"

� Spec 5: "returns its argument plus 1"

• Which code meets which spec(s)?

� Code 1: return arg;

� Code 2: return arg + arg;

� Code 3: return Math.abs(arg);

� Code 4: return arg++;

� Code 5: return arg * arg;

� Code 6: return Integer.MAX_VALUE;

• ignore int overflow for all five.

Spec1 Spec2 Spec3 Spec4 Spec5
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Good documentation

• Good documentation comments describe the following:

� the method's overall core behavior or purpose

� preconditions  (what the method requires)

� postconditions  (what the method promises)

• modifies: What objects may be affected by a call to this method?

� (Any object not listed here is assumed to be untouched afterward.)

• throws: What errors or exceptions might occur?

• effects: Guarantees on the final state of any modified objects.

• returns: What values will the value return under what circumstances?
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Spec strength

• A weaker spec is one that requires more and/or promises less.

� less work for the implementer of the code;  more for the client

� examples: doesn't work for negatives; requires sorted input; undefined 

results if the list contains duplicates; strings must be in valid format

• A stronger spec is one that requires less and/or promises more.

� less work for the client, but harder to implement

� examples: guaranteed to find a match; uses a default if a bad value is 

supplied; specifies behavior for entire range of input; runtime bounds 

• If a spec S2 is stronger than S1, then for any implementation I,

� I satisfies S2 ⇒ I satisfies S1

• Which kind of spec is better?  (It depends.)
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Class as an ADT

• abstract data type (ADT): A description of a type in terms of the 

operations that can be performed on a given set of data.

� abstracts from the details of data representation

� a spec mechanism; a way of thinking about programs and designs

• Start your design by designing data structures

� Write code to access and manipulate data
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ADT implementation
• abstract data type (ADT): A description of a type in terms of the 

operations that can be performed on a given set of data.

public class Point {      public class Point {

private double x;         private double r;

private double y;         private double theta;

...                       ...

}                         }

• Are the two above classes the same or different?

� different: can't replace one with the other

� same: both classes implement the concept "2-d point"

• Goal of ADT methodology is to express the sameness:

� Clients depend only on the concept "2-d point".  This is good.

� Delays decisions;  fixes bugs;  allows performance optimizations.
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2-D point as ADT
public class Point {

// A 2-d point exists somewhere in the plane, ...

public double getX()

public double getY()

public double getR()

public double getTheta()

// can be created

public Point()                 // new point at (0, 0)

// can be modified

public void translate(double dx, double dy)

public void scaleAndRotate(double dr, double dtheta)

...

}
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Abstraction barriers

� The implementation is hidden.

� The only operations on objects of the type are those that are provided 

by the abstraction.

Point

getX
getY

getR
getTheta
translate

scaleAndRotate

rest of
program

abstraction
barrierclients implementation
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Categories of methods

• accessor or observer: Provides information about the callee.

� Never modifies the object's visible state (its "abstract value")

• creator: Makes a new object  (constructors, factory methods).

� Not part of pre-state: in effects clause, not modifies.

• mutators: Modifies state of the object on which it was called.

� Each method has a side effect on the callee.

• producers: Creates another object(s) of the same type.

� Common in immutable types, e.g. String substring;  prototypes.

� Must have no side effects.


