
1

CSE 331

Software Specifications

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Specifications

• specification: A set of requirements agreed to by the user and the

manufacturer of a software unit or product.

� Describes the client and implementer's expectations of each other.

• In object-oriented design, a class's spec describes all publicly visible

behavior or attributes of that class.

� the class's superclass and interfaces implemented (if any)

� constructors

� methods

� public constants or fields (if any)

� nested / inner types

� any assumptions or guarantees made by the class

3

Benefits of specs

• Specs provide abstraction:

� procedural abstraction (describe methods' behavior, not code)

� data abstraction (describe classes' functionality, not implementation)

• Specs facilitate simplicity by two-way isolation:

� Isolate client from implementation details

� Isolate implementer from how the part is used

� Discourages implicit, unwritten expectations

• Specs facilitate change:

� The spec, rather than the code, gets "frozen" over time.

How is a spec written down and documented?

4

Code as spec (bad)

• The class's author might say, "To understand how my class works,

just look at its code." What's wrong with this?

public boolean subList(List<E> src, List<E> part) {

int part_index = 0;

for (E element : src) {

if (element.equals(part.get(part_index))) {

part_index++;

if (part_index == part.size()) {

return true;

}

} else {

part_index = 0;

}

}

return false;

}

� Too much detail! Client only cares what it does, not how it does it.

5

Interface as spec (bad)

• The class's author might say, "To understand how my class works,

just look at its public interface." Is this good or bad?

public interface List<E> {

public int get(int index);

public void set(int index, E value);

public void add(E value);

public void add(int index, E value);

...

public boolean subList(List<E> src, List<E> part);

}

� Not enough detail! Interface describes only the syntax, but the client

also needs to understand in detail the semantics (behavior).

6

Comments as spec

• Comments are essential to properly specifying behavior.

� But many comments are informal and incomplete:

// checks to see if part appears within src

public boolean subList(List<String> src, List<String> part) {

• In what ways are the above comments inadequate?

� Must part's elements appear consecutively, in the same order?

� What if src is null? What if part is null?

� What if either list is empty? What if both are empty?

� What is the expected runtime of the method?

� What value does it return if part is found, versus if it isn't?

(arguably obvious, but not stated very clearly in the comments)

7

What is a better comment?

• If the previous comment is inadequate, is this one a better choice?

// This method has a for loop that scans the "src" list from

// beginning to end, building up a match for "part", and

// resetting that match every time that a non-matching

// element is found. At the end, it returns false if ...

public boolean subList(List<E> src, List<E> part) {

� The above comments describe too many implementation details.

� It is possible to describe behavior thoroughly without describing every

detail of the code used to implement that behavior.

8

Spec by documentation

• The following comment header describes the behavior in detail:

/** Returns whether all elements of part appear

* consecutively within src in the same order.

* (If so, returns true; otherwise, returns false.)

* src and part cannot be null.

* If src is an empty list, always returns false.

* Otherwise, if part is an empty list, always returns true.

* ... */

public boolean subList(List<String> src, List<String> part) {

� Note that it does not describe the code inside the method.

• Only describes what the method's externally visible behavior (return value)

will be, based on its externally supplied parameters.

9

Spec exercise

• Suppose a method M takes an integer arg as an argument

� Spec 1: "returns an integer equal to its argument"

� Spec 2: "returns a non-negative integer equal to its argument"

� Spec 3: "returns an integer ≥ its argument"

� Spec 4: "returns an integer that is divisible by its argument"

� Spec 5: "returns its argument plus 1"

• Which code meets which spec(s)?

� Code 1: return arg;

� Code 2: return arg + arg;

� Code 3: return Math.abs(arg);

� Code 4: return arg++;

� Code 5: return arg * arg;

� Code 6: return Integer.MAX_VALUE;

• ignore int overflow for all five.

Spec1 Spec2 Spec3 Spec4 Spec5

10

Good documentation

• Good documentation comments describe the following:

� the method's overall core behavior or purpose

� preconditions (what the method requires)

� postconditions (what the method promises)

• modifies: What objects may be affected by a call to this method?

� (Any object not listed here is assumed to be untouched afterward.)

• throws: What errors or exceptions might occur?

• effects: Guarantees on the final state of any modified objects.

• returns: What values will the value return under what circumstances?

11

Spec strength

• A weaker spec is one that requires more and/or promises less.

� less work for the implementer of the code; more for the client

� examples: doesn't work for negatives; requires sorted input; undefined

results if the list contains duplicates; strings must be in valid format

• A stronger spec is one that requires less and/or promises more.

� less work for the client, but harder to implement

� examples: guaranteed to find a match; uses a default if a bad value is

supplied; specifies behavior for entire range of input; runtime bounds

• If a spec S2 is stronger than S1, then for any implementation I,

� I satisfies S2 ⇒ I satisfies S1

• Which kind of spec is better? (It depends.)

12

Class as an ADT

• abstract data type (ADT): A description of a type in terms of the

operations that can be performed on a given set of data.

� abstracts from the details of data representation

� a spec mechanism; a way of thinking about programs and designs

• Start your design by designing data structures

� Write code to access and manipulate data

13

ADT implementation
• abstract data type (ADT): A description of a type in terms of the

operations that can be performed on a given set of data.

public class Point { public class Point {

private double x; private double r;

private double y; private double theta;

... ...

} }

• Are the two above classes the same or different?

� different: can't replace one with the other

� same: both classes implement the concept "2-d point"

• Goal of ADT methodology is to express the sameness:

� Clients depend only on the concept "2-d point". This is good.

� Delays decisions; fixes bugs; allows performance optimizations.

14

2-D point as ADT
public class Point {

// A 2-d point exists somewhere in the plane, ...

public double getX()

public double getY()

public double getR()

public double getTheta()

// can be created

public Point() // new point at (0, 0)

// can be modified

public void translate(double dx, double dy)

public void scaleAndRotate(double dr, double dtheta)

...

}

15

Abstraction barriers

� The implementation is hidden.

� The only operations on objects of the type are those that are provided

by the abstraction.

Point

getX
getY

getR
getTheta
translate

scaleAndRotate

rest of
program

abstraction
barrierclients implementation

16

Categories of methods

• accessor or observer: Provides information about the callee.

� Never modifies the object's visible state (its "abstract value")

• creator: Makes a new object (constructors, factory methods).

� Not part of pre-state: in effects clause, not modifies.

• mutators: Modifies state of the object on which it was called.

� Each method has a side effect on the callee.

• producers: Creates another object(s) of the same type.

� Common in immutable types, e.g. String substring; prototypes.

� Must have no side effects.

