
1

CSE 331

Composite Layouts; Decorators

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

2

Pattern: Composite

objects that can contain their own type

3

Containers and layout

• Place components in a container; add the container to a frame.

� container: An object that stores components and governs their

positions, sizes, and resizing behavior.

4

Complex layout ... how?

• How would you create a complex layout like this, using only the

layout managers shown?

5

Composite pattern

• composite: An object that can be either an individual item or a

collection of many items.

� Can be composed of individual items or other composites.

� Recursive definition: Objects that can hold themselves.

� Often leads to a tree structure of leaves and nodes:

• <node> ::= <leafnode> | <compositenode>

• <compositenode> ::= <node>*

• Examples in Java:

� collections (e.g. a list of lists)

� GUI layout (containers of containers of components)

6

Composite layout

• composite layout: One made up of containers within containers.

• Each container has a different layout, and by combining the layouts,

more complex / powerful layout can be achieved.

� Example: A flow layout in the south region of a border layout.

� Example: A border layout in square (1, 2) of a grid layout.

• In the GUI at right:

� How many containers are there?

� What layout is used in each?

7

JPanel

the default container class in Swing

• public JPanel()

public JPanel(LayoutManager mgr)

Constructs a panel with the given layout (default = flow layout).

• public void add(Component comp)

public void add(Component comp, Object info)

Adds a component to the container, possibly giving extra

information about where to place it.

• public void remove(Component comp)

• public void setLayout(LayoutManager mgr)

Uses the given layout manager to position components.

8

Flow, Border, Grid layouts
Container panel1 = new JPanel(new FlowLayout());

panel1.add(new JButton("Button 1"));

panel1.add(new JButton("Button 2"));

Container panel2 = new JPanel(new BorderLayout());

panel2.add(new JButton("Button 1 (NORTH)"),

BorderLayout.NORTH);

Container panel3 = new JPanel(new GridLayout(3, 2));

panel3.add(new JButton("Button 1"));

panel3.add(new JButton("Button 2"));

9

Box layout

Container box1 = Box.createHorizontalBox();

Container box2 = Box.createVerticalBox();

• aligns components in container in a single row or column

• components use preferred sizes and align based on their

preferred alignment

� vertical box is used to get a "vertical flow layout"

10

Other layouts

• CardLayout

Layers of "cards" stacked

on top of each other;

one visible at a time.

• GridBagLayout

Powerful, but very complicated;

Our recommendation:

never use it.

•null layout

allows you to define absolute positions using setX/Y and

setWidth/Height (not recommended; platform dependent)

11

Composite layout code
Container north = new JPanel(new FlowLayout());

north.add(new JButton("Button 1"));

north.add(new JButton("Button 2"));

Container south = new JPanel(new BorderLayout());

south.add(new JLabel("Southwest"), BorderLayout.WEST);

south.add(new JLabel("Southeast"), BorderLayout.EAST);

// overall panel contains the smaller panels (composite)

Container overall = new JPanel(new BorderLayout());

overall.add(north, BorderLayout.NORTH);
overall.add(new JButton("Center"), BorderLayout.CENTER);

overall.add(south, BorderLayout.SOUTH);

frame.add(overall);

12

Pattern: Decorator
objects that "wrap" other objects to add features

13

JTextField, JTextArea

an input control for typing text values

(field = single line; area = multi-line)

• public JTextField(int columns)

public JTextArea(int lines, int columns)

Creates a new field, the given number of letters wide.

• public String getText()

Returns the text currently in the field.

• public void setText(String text)

Sets field's text to be the given string.

� What if the text area is too big to fit in the window?

14

JScrollPane

a container that adds scrollbars

around any other component

• public JScrollPane(Component comp)

Wraps the given component with scrollbars.

� After constructing the scroll pane, you must add the scroll pane, not

the original component, to the onscreen container:

myContainer.add(new JScrollPane(textarea),

BorderLayout.CENTER);

15

Decorator pattern

• decorator: An object that modifies behavior of, or adds features to,

another object.

� Must maintain the common interface of the object it wraps up.

� Used so that we can add features to an existing simple object without

needing to disrupt the interface that client code expects when using

the simple object.

� The object being "decorated" usually does not explicitly know about

the decorator.

• Examples in Java:

� Multilayered input streams adding useful I/O methods

� Adding scroll bars to GUI controls

16

Decorator example: I/O
• normal InputStream class has only public int read()

method to read one letter at a time

• decorators such as BufferedReader or Scanner add additional
functionality to read the stream more easily

// InputStreamReader/BufferedReader decorate InputStream

InputStream in = new FileInputStream("hardcode.txt");

InputStreamReader isr = new InputStreamReader(in);

BufferedReader br = new BufferedReader(isr);

// because of decorator streams, I can read an

// entire line from the file in one call

// (InputStream only provides public int read())

String wholeLine = br.readLine();

17

Decorator example: GUI

• JScrollPane is a container with scroll bars to which you can add

any component to make it scrollable

// JScrollPane decorates GUI components

JTextArea area = new JTextArea(20, 30);

JScrollPane sp = new JScrollPane(area);

contentPane.add(sp);

� Components also have a setBorder method to add a "decorative"

border. Is this another example of the Decorator pattern? Why or

why not?

18

JOptionPane

•JOptionPane.showMessageDialog(parent, message);

import javax.swing.*;

JOptionPane.showMessageDialog(null,

"This candidate is a dog. Invalid vote.");

• Advantages:

� Simple; looks better than console.

• Disadvantages:

� Created with static methods;

not object-oriented.

� Not powerful (just simple dialog boxes).

19

More JOptionPane

•JOptionPane.showConfirmDialog(parent, message)

� Displays a message and list of choices Yes, No, Cancel.

� Returns an int such as JOptionPane.YES_OPTION or

NO_OPTION to indicate what button was pressed.

•JOptionPane.showInputDialog(parent, message)

� Displays a message and text field for input.

� Returns the value typed as a String

(or null if user presses Cancel).

