
1

CSE 331

Model/View Separation and Observer Pattern

slides created by Marty Stepp

based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/



2

Model and view
• model: Classes in your system that are related to the internal 

representation of the state and behavior of the system.

� often part of the model is connected to file(s) or database(s)

� examples (card game): Card, Deck, Player

� examples (bank system): Account, User, UserList

• view: Classes in that display the state of the model to the user.

� generally, this is your GUI (could also be a text UI)

� should not contain crucial application data

� Different views can represent the same data in different ways

• Example: Bar chart vs. pie chart

� examples: PokerGUI, PacManCanvas, BankApplet



3

Model-view-controller

• model-view-controller (MVC): Design paradigm for graphical 

systems that promotes strict separation between model and view.

• controller: classes that connect model and view

� defines how user interface reacts to user input (events)

� receives messages from view (where events come from)

� sends messages to model (tells what data to display)

Model

Controller

View

data for 

rendering

eventsupdates
Model

View

Component

Controller



4

Model/view separation

• Your model classes should NOT:

� import graphical packages (java.awt.*, javax.swing.*)

� store direct references to GUI classes or components

� know about the graphical classes in your system

� store images, or names of image files, to be drawn

� drive the overall execution of your program

• Your view/controller classes should:

� store references to the model class(es)

� call methods on the model to update it when events occur

• Tricky part: Updating all aspects of the view properly when the state 

of the model changes...



5

Pattern: Observer

objects that listen for updates to the state of others 



6

Observer pattern
• observer: An object that "watches" the state of another object and 

takes action when the state changes in some way.

• Problem: You have a model object with a complex state, and the 
state may change throughout the life of your program.

� You want to update various other parts of the program when the 
object's state changes.

• Solution: Make the complex model object observable.

• observable object: An object that allows observers to examine it 
(notifies its observers when its state changes).

� Permits customizable, extensible event-based behavior for data 
modeling and graphics.



7

Benefits of observer

• Abstract coupling between subject and observer; each can be 

extended and reused individually.

• Dynamic relationship between subject and observer; can be 

established at run time (can "hot-swap" views, etc) gives more 

programming flexibility.

• Broadcast communication: Notification is broadcast automatically to 

all interested objects that subscribed to it.

• Can be used to implement model-view separation in Java easily.



8

Observer sequence diagram



9

Observer interface
// import java.util.*;

public interface Observer {

public void update(Observable o, Object arg);

}

public class Observable { ... }

• Basic idea:

� Make your view code implement Observer.

� Make your main model class extend Observable.

� Attach the view to the model as an observer.

� The view's update method will be called when the observable model 

changes, so write code to handle the change inside update.



10

Observable class

adds an Observer to this object; its update method is 

called when notifyObservers is called

addObserver(Observer)

inform all observers about a change to this object; 

can pass optional object with more information

notifyObservers()

notifyObservers(arg)

flags that this object's state has changed; must be 

called prior to each call to notifyObservers

setChanged()

removes an Observer from this objectdeleteObserver(Observer)

DescriptionMethod name



11

• Make an Observable model.

• Write an abstract View superclass which is a JComponent.

� make View an observer

• Extend View for all of your actual views.

� Give each its own unique inner components and code to draw the 
model's state in its own way.

• Provide a mechanism in GUI to set the view (perhaps via menus).

� To set the view, attach it to observe the model.

Multiple views



12

Multiple views examples

• File explorer (icon view, list view, details view)

• Games (overhead view, rear view, 3D view)

• Graphs and charts (pie chart, bar chart, line chart)



13

Model/view exercise

• Let's develop a graphical game of Rock-Paper-Scissors.

� Write a GUI for the game using Swing.

� Represent the game state as a model separate from the view.

� Make the model observable and make the view observe it.


