
CSE 331
Section 7 cheat sheet

OO design heuristics, MVC

Goals for modular software:

 Decomposable: can be broken down into pieces
 Composable: each piece is useful, and can be combined with other pieces in multiple ways

 Understandable: each piece makes sense in isolation

 Safe: an error affects few modules

Design heuristics help us reason about:

 What should be a class

 Responsibilities of a particular class
 Collaboration between classes

OO design heuristics

What should be a class?
Nouns from the project specification are good candidates.

 “A class should capture one and only one key abstraction.”

 “Spin off non-related behavior into another class (i.e., non-communicating behavior).”

 “Be sure the abstractions that you model are classes and not simply the roles objects play.”
 “Do not create god classes/objects in your system. Be very suspicious of a class whose name contains

Driver, Manager, System, or Subsystem.”

 “Model the real world whenever possible.”
 “Eliminate irrelevant classes from your design.”

 “Eliminate classes that are outside the system.”

 “Do not turn an operation into a class. Be suspicious of any class whose name is a verb or is derived from
a verb, especially those that have only one piece of meaningful behavior (don't count set, get, print).”

 “Agent classes are often placed in the analysis model of an application. During design time, many agents
are found to be irrelevant and should be removed.”

 “Beware of classes that have many accessor methods defined in their public interface.”

 “Beware of classes that have too much noncommunicating behavior.”

What responsibilities should a class have? What should its public interface be?
Look at verbs used in the project specification.

 “Keep related data and behavior in one place.”
 “All data should be hidden within its class.”

 “Minimize the number of messages in the protocol of a class.”

 “Implement a minimal public interface that all classes understand.”
 “Do not put implementation details such as common-code private functions into the public interface of

a class.”

 “Do not clutter the public interface of a class with items that users of that class are not able to use or are
not interested in using.”

 “Classes should not contain more objects than a developer can fit in his or her short-term memory. A
favorite value for this number is six.”

How should classes collaborate? What should their relationship look like?

relationship description example

extension “is a” – a superclass / subclass
relationship

ChocolateChipCookie
“is a” Cookie

composition “is entirely made of” – a field that is
the true essence of the state of the
object containing it; stronger than
aggregation

Book “is entirely made of”
Page

aggregation “is part of” – a field Engine “is part of” Car
dependency “uses temporarily” – often a

parameter, rather than a field; an
implementation detail

LotteryTicket “uses

temporarily” Random

 “Users of a class must be dependent on its public interface, but a class should not be dependent on its
users.”

 “Classes should only exhibit nil or export coupling with other classes, that is, a class should only use
operations in the public interface of another class or have nothing to do with that class.”

 “Distribute system intelligence horizontally as uniformly as possible, that is, the top-level classes in a
design should share the work uniformly.”

 “In applications that consist of an object-oriented model interacting with a user interface, the model
should never be dependent on the interface.”

Model-View-Controller

Goal: separate classes that manage the user interaction (the View) from classes that contain the core data and
behavior of the program (the Model).

Model
(classes with
core data and
behavior, are
Observable)

View
(GUI classes,

Observers of the
Model classes)

Controller
(event

listeners)

Events
Observer.update() called

when state changes

Call model methods

