CSE 331
Section 7 cheat sheet
0O design heuristics, MVC

Goals for modular software:

e Decomposable: can be broken downinto pieces

e Composable: each piece is useful, and can be combined with other pieces in multiple ways
Understandable: each piece makes senseinisolation
Safe: an error affects few modules

Design heuristics help us reason about:
e What should be aclass
e Responsibilities of aparticularclass
e Collaboration between classes

00 design heuristics

What should be a class?

Nouns fromthe project specification are good candidates.
e “Aclassshould capture one and only one key abstraction.”

“Spin off non-related behaviorinto anotherclass (i.e., non-communicating behavior).”

e “Be surethe abstractions that you model are classes and not simply the roles objects play.”

e “Do not create god classes/objects in your system. Be very suspicious of a class whose name contains
Driver, Manager, System, or Subsystem.”

e “Modelthe real world wheneverpossible.”

e “Eliminateirrelevant classes fromyourdesign.”

e “Eliminate classesthatare outside the system.”

e “Do notturn an operationintoaclass. Be suspicious of any class whose nameisa verboris derived from
averb, especially those that have only one piece of meaningful behavior (don't count set, get, print).”

e “Agentclassesare often placedinthe analysis model of an application. During design time, many agents
are foundtobe irrelevantand should be removed.”

e “Beware of classesthat have many accessor methods defined in their publicinterface.”

e “Beware of classesthat have too much noncommunicating behavior.”

What responsibilities should a class have? What shouldits publicinterface be?
Look at verbs usedin the project specification.
e “Keeprelateddataandbehaviorinone place.”
e “All data should be hidden withinits class.”
e “Minimize the numberof messagesinthe protocol of aclass.”
“Implementaminimal publicinterface that all classes understand.”
e “Do not putimplementation details such as common-code private functions into the publicinterface of
aclass.”
e “Do not clutterthe publicinterface of aclass with items that users of that class are not able to use or are
not interested in using.”

e “Classesshould not contain more objects than a developercanfitin his or her short-termmemory. A
favorite value forthis numberissix.”

How should classes collaborate? Whatshouldtheirrelationship look like?

relationship

description

example

extension

“is a” — a superclass/ subclass
relationship

ChocolateChipCookie
“isa” Cookie

composition

“is entirely made of” —a field thatis
the true essence of the state of the
object containingit; strongerthan
aggregation

Book “isentirely made of”
Page

aggregation

“is part of”— afield

Engine “is part of” Car

dependency

“usestemporarily” —oftena
parameter, ratherthana field; an
implementation detail

LotteryTicket “uses
temporarily” Random

e “Users of a class must be dependentonits publicinterface, butaclass should notbe dependentonits

users.”

e “Classesshould only exhibit nil or export coupling with other classes, thatis, aclass should only use
operationsinthe publicinterface of anotherclass or have nothingto do with that class.”

e “Distribute systemintelligence horizontally as uniformly as possible, thatis, the top-levelclassesina
designshould share the work uniformly.”

e “In applications that consist of an object-oriented model interacting with auserinterface, the model
should neverbe dependent on the interface.”

Model-View-Controller

Goal: separate classes that manage the userinteraction (the View) from classes that contain the core data and
behavior of the program (the Model).

Model

(classes with
core data and
behavior, are
Observable)

Call model methods

Observer.update() called
when state changes

View
(GUI classes,
Observers of the
Model classes)

Controller

listeners)

Events

(event

