CSE 331
Section 7 cheat sheet
0O design heuristics, MVC

Goals for modular software:

e Decomposable: can be broken downinto pieces

e Composable: each piece is useful, and can be combined with other pieces in multiple ways
Understandable: each piece makes senseinisolation
Safe: an error affects few modules

Design heuristics help us reason about:
e What should be aclass
e Responsibilities of aparticularclass
e Collaboration between classes

00 design heuristics

What should be a class?

Nouns fromthe project specification are good candidates.
e “Aclassshould capture one and only one key abstraction.”

“Spin off non-related behaviorinto anotherclass (i.e., non-communicating behavior).”

e “Be surethe abstractions that you model are classes and not simply the roles objects play.”

e “Do not create god classes/objects in your system. Be very suspicious of a class whose name contains
Driver, Manager, System, or Subsystem.”

e “Modelthe real world wheneverpossible.”

e “Eliminateirrelevant classes fromyourdesign.”

e “Eliminate classesthatare outside the system.”

e “Do notturn an operationintoaclass. Be suspicious of any class whose nameisa verboris derived from
averb, especially those that have only one piece of meaningful behavior (don't count set, get, print).”

e “Agentclassesare often placedinthe analysis model of an application. During design time, many agents
are foundtobe irrelevantand should be removed.”

e “Beware of classesthat have many accessor methods defined in their publicinterface.”

e “Beware of classesthat have too much noncommunicating behavior.”

What responsibilities should a class have? What shouldits publicinterface be?
Look at verbs usedin the project specification.
e “Keeprelateddataandbehaviorinone place.”
e “All data should be hidden withinits class.”
e  “Minimize the numberof messagesinthe protocol of aclass.”
“Implementaminimal publicinterface that all classes understand.”
e “Do not putimplementation details such as common-code private functions into the publicinterface of
aclass.”
e “Do not clutterthe publicinterface of aclass with items that users of that class are not able to use or are
not interested in using.”

e “Classesshould not contain more objects than a developercanfitin his or her short-termmemory. A
favorite value forthis numberissix.”




How should classes collaborate? Whatshouldtheirrelationship look like?

relationship

description

example

extension

“is a” — a superclass/ subclass
relationship

ChocolateChipCookie
“isa” Cookie

composition

“is entirely made of” —a field thatis
the true essence of the state of the
object containingit; strongerthan
aggregation

Book “isentirely made of”
Page

aggregation

“is part of”— afield

Engine “is part of” Car

dependency

“usestemporarily” —oftena
parameter, ratherthana field; an
implementation detail

LotteryTicket “uses
temporarily” Random

e “Users of a class must be dependentonits publicinterface, butaclass should notbe dependentonits

users.”

e “Classesshould only exhibit nil or export coupling with other classes, thatis, aclass should only use
operationsinthe publicinterface of anotherclass or have nothingto do with that class.”

e “Distribute systemintelligence horizontally as uniformly as possible, thatis, the top-levelclassesina
designshould share the work uniformly.”

e “In applications that consist of an object-oriented model interacting with auserinterface, the model
should neverbe dependent on the interface.”

Model-View-Controller

Goal: separate classes that manage the userinteraction (the View) from classes that contain the core data and
behavior of the program (the Model).
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