
CSE 331
Software Design & Implementation

Hal Perkins
Autumn 2012

Data Abstraction: Abstract Data Types (ADTs)
(Based on slides by Mike Ernst and David Notkin)

1

Outline

First:
Data Abstraction – ADTs
ADT specification and Implementation

Then: Reasoning about ADTs
Representation Invariants (RIs)
Abstraction Functions (AFs)

2

Review: Satisfaction of a specification

Let P be an implementation and S a specification
Think “procedures/methods/functions” for the moment

P satisfies S iff
Every behavior of P is permitted by S
“The behavior of P is a subset of S”

The statement “P is correct” is meaningless
Though often made!

If P does not satisfy S, either (or both!) could be “wrong”
“One person’s feature is another person’s bug.”
It’s usually better to change the program than the spec

3

Scaling Up Specifications

Procedural abstraction:
Abstracts from details of procedures
A specification mechanism
Satisfy the specification with an implementation

Data abstraction:
Abstracts from details of data representation
A specification mechanism

A way of thinking about programs and design
Standard terminology: Abstract Data Type, or ADT

4

Why we need Abstract Data Types

Organizing and manipulating data is pervasive
Inventing and describing algorithms is rare

Start your design by designing data structures
Potential problems with choosing a data abstraction:

Decisions about data structures often made too early
Duplication of effort in creating derived data
Very hard to change key data structures

5

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
ADT abstracts from structure to use
Representation does not matter; this choice is (or
should be) irrelevant to the client:

Instead, think of a type as a set of operations

create, getBase, getAltitude, getBottomAngle, ...
Force clients (users) to use operations to access data

class RightTriangle {
 float base, altitude;
}

class RightTriangle {
 float base, hypot, angle;
}

6

Are these classes the same?

class Point { class Point {
 public float x; public float r;
 public float y; public float theta;
} }

Different: can't replace one with the other
Same: both classes implement the concept "2-d point"
Goal of ADT methodology is to express the sameness:

Clients depend only on the concept "2-d point"
Can delay implementation decisions, fix bugs,
change algorithms without affecting clients

7

Point
x
y
r
theta
translate
scale_rot

rest of
program

abstraction
barrier

Abstract data type = objects + operations

The implementation is hidden
The only operations on objects of the type are those

provided by the abstraction

clients implementation

8

Concept of 2-d point, as an ADT
class Point {
 // A 2-d point exists somewhere in the plane, ...

 public float x();
 public float y();
 public float r();
 public float theta();

 // ... can be created, ...
 public Point(); // new point at (0,0)
 public Point centroid(Set<Point> points);

 // ... can be moved, ...
 public void translate(float delta_x,
 float delta_y);
 public void scaleAndRotate(float delta_r,
 float delta_theta);

}

9

Observers

Creators/
Producers

Mutators

A data abstraction is defined by a
specification
A collection of procedural abstractions

Not a collection of procedures
Together, these procedural abstractions provide a set of
values

All the ways of directly using that set of values
Creating
Manipulating
Observing

Creators and producers: make new values
Mutators: change the value (but don’t affect ==)
Observers: allow one to tell values apart

10

Connecting specifications and
implementations
Specification: describes ADT only in terms of the
abstraction

Never mentions the representation
Abstraction Function: maps object → abstract value

What the data structure means as an abstract value
How the data structure is to be interpreted
Ex: point in the plane represented by Point object

Representation Invariant: maps object → boolean
Indicates whether a data structure is well-formed
Defines set of valid values of the data structure
Only well-formed representations (values) make
sense as implementations of an abstract value

11

Implementing an ADT

To implement a data abstraction
Select the representation of instances, the “rep”
Implement operations in terms of that rep

In Java this is typically done with a class
Choose a representation so that:

It is possible to implement required operations
The most frequently used operations are efficient

But which will these be?
Abstraction allows the rep to change later

12

Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// effects: creates an empty CharSet
public CharSet ()

// modifies: this
// effects: thispost = thispre U {c}
public void insert (Character c);

// modifies: this
// effects: thispost = thispre - {c}
public void delete (Character c);

// returns: (c ∈ this)
public boolean member (Character c);

// returns: cardinality of this
public int size ();

13

A CharSet implementation: Is it OK?
class CharSet {
 private List<Character> elts =

 new ArrayList<Character>();
 public void insert(Character c) {
 elts.add(c);

 }
 public void delete(Character c) {
 elts.remove(c);

 }
 public boolean member(Character c) {
 return elts.contains(c);

 }
 public int size() {
 return elts.size();

 }
}

CharSet s = new CharSet();
Character a = new Character(‘a’);
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))
 // print “wrong”;
else
 // print “right”;

Where Is the Error?

Answer this and you know what to fix
Perhaps delete is wrong

It should remove all occurrences
Perhaps insert is wrong

It should not insert a character that is already there
How can we know?

The representation invariant tells us

15

The representation invariant

States data structure well-formedness
Must hold before and after every CharSet operation
Operations (methods) may depend on it
Write it this way
 class CharSet {

 // Rep invariant:
 // elts has no nulls and no duplicates
 private List<Character> elts;
 …

Or, more formally:
∀ indices i of elts . elts.elementAt(i) ≠ null
∀ indices i, j of elts .
 i ≠ j ⇒ ¬ elts.elementAt(i).equals(elts.elementAt(j))

 16

Now, we can locate the error

// Rep invariant:
// elts has no nulls and no duplicates

public void insert(Character c) {
 elts.add(c);

}

public void delete(Character c) {
 elts.remove(c);

}

17

Listing the elements of a CharSet

Consider adding the following method to CharSet
// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:
// Rep invariant: elts has no nulls and no dups.
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep
invariant?

Kind of, sort of, not really….

18

Representation exposure

Consider the client code (outside the CharSet
implementation)

CharSet s = new CharSet();
Character a = new Character(‘a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

Representation exposure is external access to the rep
Representation exposure is almost always evil

If you do it, document why and how
And feel guilty about it!

19

Ways to avoid rep exposure

1.  Exploit immutability
Character choose() {
 return elts.elementAt(0);
}
Character is immutable.

2.  Make a copy

List<Character> getElts() {
 return new ArrayList<Character>(elts);
 // or: return (ArrayList<Character>) elts.clone();
}
Mutating a copy doesn’t affect the original.
Don’t forget to make a copy on the way in!

3.  Make an immutable copy

List<Character> getElts() {
 return Collections.unmodifiableList<Character>(elts);
}
Client cannot mutate
Still need to make a copy on the way in

20

Checking rep invariants

Should code check that the rep invariant holds?
–  Yes, if it’s inexpensive
–  Yes, for debugging (even when it’s expensive)
–  It’s quite hard to justify turning the checking off
–  Some private methods need not check (Why?)

21

Checking the rep invariant
Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {
 checkRep();
 elts.remove(c)

 // Is this guaranteed to get called?
 // (there are ways to guarantee it)
 checkRep();
}
…
/** Verify that elts contains no duplicates. */
private void checkRep() {
 for (int i = 0; i < elts.size(); i++) {
 assert elts.indexOf(elts.elementAt(i)) == i;
 }
}

22

Practice defensive programming

Assume that you will make mistakes
Write and incorporate code designed to catch them

On entry:
Check rep invariant
Check preconditions (requires clause)

On exit:
Check rep invariant
Check postconditions

Checking the rep invariant helps you discover errors
Reasoning about the rep invariant helps you avoid errors

Or prove that they do not exist!

23

Rep inv. constrains structure, not meaning

New implementation of insert that preserves the rep invariant:
public void insert(Character c) {
 Character cc = new Character(encrypt(c));
 if (!elts.contains(cc))
 elts.addElement(cc);
}
public boolean member(Character c) {
 return elts.contains(c);
}

The program is still wrong
Clients observe incorrect behavior
What client code exposes the error?
Where is the error?
We must consider the meaning
The abstraction function helps us

CharSet s = new CharSet();
Character a = new
Character(‘a’));
s.insert(a);
if (s.member(a))
 // print “right”;
else
 // print “wrong”;

Abstraction function: rep→abstract value

The abstraction function maps the concrete representation to the
abstract value it represents

AF: Object → abstract value
AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”
Typically not executable

The abstraction function lets us reason about behavior from the
client perspective

25

Abstraction function and insert

Our real goal is to satisfy the specification of insert:

// modifies: this
// effects: thispost = thispre U {c}
public void insert (Character c);

Once again we can place the blame
Applying the abstraction function to the result of the call to

insert yields AF(elts) U {encrypt(‘a’)}
What if we used this abstraction function?

AF(this) = { c | encrypt(c) is contained in this.elts }
 = { decrypt(c) | c is contained in this.elts }

26

Summary
Rep invariant

Which concrete values represent abstract values
Abstraction function

For each concrete value, which abstract value it
represents

Together, they modularize the implementation
Can examine operators one at a time
Neither one is part of the abstraction (the ADT)

In practice
Always write a representation invariant
Write an abstraction function when you need it

Write an informal one for most non-trivial classes
A formal one is harder to write and usually less useful

Next time: more examples and perspective
27

