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Outline 

First: 
Data Abstraction – ADTs 
ADT specification and Implementation 

Then: Reasoning about ADTs 
Representation Invariants (RIs) 
Abstraction Functions (AFs) 
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Review: Satisfaction of a specification 

Let P be an implementation and S a specification 
Think “procedures/methods/functions” for the moment 

P satisfies S iff 
Every behavior of P is permitted by S 
“The behavior of P is a subset of S” 

The statement “P is correct” is meaningless 
Though often made! 

If P does not satisfy S, either (or both!) could be “wrong” 
“One person’s feature is another person’s bug.” 
It’s usually better to change the program than the spec 

 

3 



Scaling Up Specifications 

Procedural abstraction: 
Abstracts from details of procedures 
A specification mechanism 
Satisfy the specification with an implementation 

Data abstraction: 
Abstracts from details of data representation  
A specification mechanism 

A way of thinking about programs and design 
Standard terminology: Abstract Data Type, or ADT 
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Why we need Abstract Data Types 

Organizing and manipulating data is pervasive 
Inventing and describing algorithms is rare 

Start your design by designing data structures 
Potential problems with choosing a data abstraction: 

Decisions about data structures often made too early 
Duplication of effort in creating derived data 
Very hard to change key data structures 
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An ADT is a set of operations 

ADT abstracts from the organization to meaning of data 
ADT abstracts from structure to use   
Representation does not matter; this choice is (or 
should be) irrelevant to the client: 
 
 
 
Instead, think of a type as a set of operations 

create, getBase, getAltitude, getBottomAngle, ... 
Force clients (users) to use operations to access data 

class RightTriangle { 
  float base, altitude; 
} 

class RightTriangle { 
  float base, hypot, angle; 
} 
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Are these classes the same? 

class Point {   class Point { 
  public float x;    public float r; 
  public float y;    public float theta; 
}     } 
 
Different: can't replace one with the other 
Same: both classes implement the concept "2-d point"  
Goal of ADT methodology is to express the sameness: 

Clients depend only on the concept "2-d point" 
Can delay implementation decisions, fix bugs, 
change algorithms without affecting clients 
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Abstract data type = objects + operations 

The implementation is hidden 
The only operations on objects of the type are those 

provided by the abstraction 

clients implementation 
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Concept of 2-d point, as an ADT 
class Point { 
  // A 2-d point exists somewhere in the plane, ... 

  
  public float x(); 
  public float y(); 
  public float r(); 
  public float theta(); 
 
  // ... can be created, ... 
  public Point();       // new point at (0,0) 
  public Point centroid(Set<Point> points); 
 
  // ... can be moved, ... 
  public void translate(float delta_x, 
                        float delta_y); 
  public void scaleAndRotate(float delta_r, 
      float delta_theta); 

}   
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A data abstraction is defined by a 
specification 
A collection of procedural abstractions 

Not a collection of procedures 
Together, these procedural abstractions provide a set of 
values 

All the ways of directly using that set of values 
Creating 
Manipulating 
Observing 

Creators and producers:  make new values 
Mutators:  change the value (but don’t affect ==) 
Observers:  allow one to tell values apart 
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Connecting specifications and 
implementations 
Specification: describes ADT only in terms of the 
abstraction 

Never mentions the representation 
Abstraction Function: maps object → abstract value 

What the data structure means as an abstract value 
How the data structure is to be interpreted 
Ex: point in the plane represented by Point object 

Representation Invariant: maps object → boolean 
Indicates whether a data structure is well-formed   
Defines set of valid values of the data structure 
Only well-formed representations (values) make 
sense as implementations of an abstract value 

11 



Implementing an ADT 

To implement a data abstraction 
Select the representation of instances, the “rep” 
Implement operations in terms of that rep 

In Java this is typically done with a class 
Choose a representation so that: 

It is possible to implement required operations 
The most frequently used operations are efficient 

But which will these be? 
Abstraction allows the rep to change later 
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Example: CharSet Abstraction 

// Overview: A CharSet is a finite mutable set of Characters 
 
// effects: creates an empty CharSet  
public CharSet ( ) 
 

// modifies: this 
// effects: thispost = thispre U {c} 
public void insert (Character c); 
 

// modifies: this 
// effects: thispost = thispre - {c} 
public void delete (Character c); 
 

// returns: (c ∈ this) 
public boolean member (Character c); 
 

// returns: cardinality of this 
public int size ( );   
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A CharSet implementation: Is it OK? 
class CharSet { 
  private List<Character> elts =  

    new ArrayList<Character>(); 
  public void insert(Character c)   { 
   elts.add(c); 

  } 
  public void delete(Character c)   { 
   elts.remove(c); 

  } 
  public boolean member(Character c) { 
   return elts.contains(c); 

  } 
  public int size() { 
   return elts.size(); 

  } 
} 
 

CharSet s = new CharSet(); 
Character a = new Character(‘a’); 
s.insert(a); 
s.insert(a); 
s.delete(a); 
if (s.member(a)) 
    // print “wrong”; 
else 
    // print “right”; 



Where Is the Error? 

Answer this and you know what to fix 
Perhaps  delete  is wrong 

It should remove all occurrences 
Perhaps  insert  is wrong 

It should not insert a character that is already there 
How can we know? 

The representation invariant tells us 
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The representation invariant 

States data structure well-formedness 
Must hold before and after every CharSet operation 
Operations (methods) may depend on it 
Write it this way 
    class CharSet { 

 // Rep invariant:  
 //   elts has no nulls and no duplicates  
 private List<Character> elts; 
  … 

Or, more formally: 
∀ indices i of elts . elts.elementAt(i) ≠ null 
∀ indices i, j of elts . 
      i ≠ j ⇒ ¬ elts.elementAt(i).equals(elts.elementAt(j)) 
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Now, we can locate the error 

// Rep invariant: 
// elts has no nulls and no duplicates  
 
public void insert(Character c) { 
 elts.add(c); 

} 
 
public void delete(Character c) { 
 elts.remove(c); 

} 
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Listing the elements of a CharSet 

Consider adding the following method to CharSet 
// returns: a List containing the members of this  
public List<Character> getElts(); 

Consider this implementation: 
// Rep invariant: elts has no nulls and no dups. 
public List<Character> getElts() { return elts; } 

Does the implementation of  getElts  preserve the rep 
invariant? 

Kind of, sort of, not really…. 
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Representation exposure 

Consider the client code (outside the CharSet 
implementation) 

CharSet s = new CharSet(); 
Character a = new Character(‘a’); 
s.insert(a); 
s.getElts().add(a); 
s.delete(a); 
if (s.member(a)) … 
 

Representation exposure is external access to the rep 
Representation exposure is almost always evil 

If you do it, document why and how 
And feel guilty about it! 
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Ways to avoid rep exposure 

1.  Exploit immutability 
Character choose() { 
  return elts.elementAt(0); 
} 
Character is immutable. 

 
2.  Make a copy 

List<Character> getElts() { 
  return new ArrayList<Character>(elts); 
  // or: return (ArrayList<Character>) elts.clone(); 
} 
Mutating a copy doesn’t affect the original. 
Don’t forget to make a copy on the way in! 

 
3.  Make an immutable copy 

List<Character> getElts() { 
  return Collections.unmodifiableList<Character>(elts); 
} 
Client cannot mutate 
Still need to make a copy on the way in 
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Checking rep invariants 

Should code check that the rep invariant holds? 
–  Yes, if it’s inexpensive 
–  Yes, for debugging (even when it’s expensive) 
–  It’s quite hard to justify turning the checking off 
–  Some private methods need not check  (Why?) 
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Checking the rep invariant 
Rule of thumb:  check on entry and on exit (why?) 
 
public void delete(Character c) { 
  checkRep(); 
  elts.remove(c) 
 
  // Is this guaranteed to get called? 
  // (there are ways to guarantee it) 
  checkRep(); 
} 
… 
/** Verify that elts contains no duplicates. */ 
private void checkRep() { 
  for (int i = 0; i < elts.size(); i++) { 
    assert elts.indexOf(elts.elementAt(i)) == i; 
  } 
} 
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Practice defensive programming 

Assume that you will make mistakes 
Write and incorporate code designed to catch them 

On entry: 
Check rep invariant 
Check preconditions (requires clause) 

On exit: 
Check rep invariant 
Check postconditions 

Checking the rep invariant helps you discover errors 
Reasoning about the rep invariant helps you avoid errors 

Or prove that they do not exist! 
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Rep inv. constrains structure, not meaning 

New implementation of insert that preserves the rep invariant: 
public void insert(Character c) {  
  Character cc = new Character(encrypt(c)); 
  if (!elts.contains(cc)) 
    elts.addElement(cc); 
} 
public boolean member(Character c) {  
  return elts.contains(c); 
} 

The program is still wrong 
Clients observe incorrect behavior 
What client code exposes the error? 
Where is the error? 
We must consider the meaning  
The abstraction function helps us 
 

CharSet s = new CharSet(); 
Character a = new 
Character(‘a’)); 
s.insert(a); 
if (s.member(a)) 
    // print “right”; 
else  
    // print “wrong”; 



Abstraction function:  rep→abstract value 

The abstraction function maps the concrete representation to the 
abstract value it represents 

AF:  Object → abstract value 
AF(CharSet this) = { c | c is contained in this.elts } 

“set of Characters contained in this.elts” 
Typically not executable 

The abstraction function lets us reason about behavior from the 
client perspective 
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Abstraction function and insert 

Our real goal is to satisfy the specification of insert: 

// modifies: this 
// effects: thispost = thispre U {c} 
public void insert (Character c); 
 

Once again we can place the blame 
Applying the abstraction function to the result of the call to 

insert yields AF(elts) U {encrypt(‘a’)} 
What if we used this abstraction function? 

AF(this) = { c | encrypt(c) is contained in this.elts } 
             = { decrypt(c) | c is contained in this.elts } 
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Summary 
Rep invariant 

Which concrete values represent abstract values 
Abstraction function 

For each concrete value, which abstract value it 
represents 

Together, they modularize the implementation 
Can examine operators one at a time 
Neither one is part of the abstraction (the ADT) 

In practice 
Always write a representation invariant 
Write an abstraction function when you need it 

Write an informal one for most non-trivial classes 
A formal one is harder to write and usually less useful 
 

Next time: more examples and perspective 
27 


