
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2012

Usability
(Slides by Mike Ernst and David Notkin

based on slides due to Robin Miller)

1

Usability

A lecture on usability
won’t make anyone an
interface expert – any
more than using LaTeX
makes one a graphics
designer. But it’s
important to have some
appreciation for the
issues. And you’re
designing a UI in hw8….

2

User Interface Hall of Shame

Source: Interface Hall of Shame

3

What’s wrong?

•  Usability is about creating effective user interfaces
•  The first slide shows a WYSIWYG GUI – but it still fails –

why?
•  The long help message is needed for a simple task

because the interface is bizarre!
–  The scrollbar is used to select an award template
–  Each position on the scrollbar represents a template,

and moving the scrollbar back and forth changes the
template shown

–  Cute but bad use of a scrollbar
–  How many templates? No indication on scrollbar
–  How are the templates organized? No hint

4

User Interface Hall of Shame

Source: Interface Hall of Shame

•  Inconsistent
with common
usage of
scrollbars –
usually used
for continuous
scrolling, not
discrete
selection

•  How does a
frequent user
find a template
they’ve used
before?

5

Redesigning the Interface

Source: Interface Hall of Shame

6

Another for the Hall of Shame

Source: Interface Hall of Shame

•  The date and time look editable
but aren’t – click “Set Time” for a
dialog box instead

•  Dialog box displays inconsistently
with launch time – 12 vs. 24, analog
vs. digital

•  Click left [right] button to increase the
minutes [hours] by 1 – makes a
sophisticated GUI into a clock radio!

7

Hall of Fame or Hall of Shame?

Gimp windows had
no menus –
instead, right-click
to get a popup
menu and navigate
further. Is this a
fast way to select
commands?

8

User Interfaces Are Hard to Design

•  You are not the user
–  Most software engineering is about

communicating with other programmers
–  UI is about communicating with users

•  The user is always right
–  Consistent problems are the system’s fault

•  …but the user is not always right
–  Users aren’t designers

9

Iterative Design

•  UI development is an iterative process

•  Iterations can be costly
–  If the design turns out to be bad, you may have to

throw away most of your code

Design

Implement Evaluate

10

Spiral Model

•  Use throw-away prototypes and cheap evaluation for
early iterations

Design

Implement Evaluate

11

Usability Defined

•  Usability: how well users can use the system’s
functionality

•  Dimensions of usability
–  Learnability: is it easy to learn?
–  Efficiency: once learned, is it fast to use?
–  Memorability: is it easy to remember what you

learned?
–  Errors: are errors few and recoverable?
–  Satisfaction: is it enjoyable to use?

12

Lecture Outline

1. Design

2. Implement 3. Evaluate

design principles

low-fidelity prototypes user testing

13

Learnability

Source: Interface Hall of Shame

•  Related to “intuitive”
and “user-friendly”

•  The first example had
serious problems with
learnability, especially
with the scrollbar
–  Unfamiliar usage
–  Inconsistent usage
–  And outright

inappropriate usage

14

Metaphorical Design

Source: Interface Hall of Shame

•  Designers based it on a real-world
plastic CD case

•  Metaphors are one way to make an
interface “intuitive,” since users can
make guesses about how it will work

•  Dominated by static artwork – clicking
it does nothing

•  Why? A CD case doesn’t actually play
CDs, so the designers had to find a
place for the core player controls

•  The metaphor is dictating control
layout, against all other considerations

•  Also disregards consistency with other
desktop applications. Close box? Shut
it down?

15

People Don't Learn Instantly

Source: Interface Hall of Shame

•  To design for learnability it helps to know how people
actually learn

•  This example shows overreliance on the user’s memory
–  It’s a modal dialog box, so the user needs to click OK
–  But then the instructions vanish from the screen, and

the user is left to struggle to remember them
–  Just because you've said it, doesn't mean they know it

16

Some Facts About Memory & Learning

•  Working memory
–  Small: 7 ± 2 “chunks”
–  Short-lived: gone in ~10 sec
–  Maintenance rehearsal is required to keep it from

decaying (but costs attention)
•  Long-term memory

–  Practically infinite in size and duration
–  Elaborative rehearsal transfers chunks to long-

term memory

Long-term
Memory

Working
Memory

17

Design Principles for Learnability

•  Consistency
–  Similar things look similar,

different things different
–  Terminology, location,

argument order, ...
–  Internal, external, metaphorical

•  Match the real world
–  Common words, not tech jargon

•  Recognition, not recall
–  Labeled buttons are better than command languages
–  Combo boxes are better than text boxes

Source: Interface Hall of Shame

18

Visibility
•  Familiar, easy to use
•  But passes up some tremendous

opportunities, including
–  Why only one line of display?
–  Why not a history?
–  Why only one memory slot? Why display “M” instead of

the actual number stored in memory?
–  Visibility also compromised by invisible modes

•  When entering a number, pressing a digit appends it to the
number; but after pressing an operator button, the next digit
starts a new number – no visible feedback the low-level mode

•  It also lets you type numbers on the keyboard, but there is no
hint about this

19

Feedback

20

Facts About Human Perception

normal vision red-green deficient

•  Perceptual fusion: stimuli < 100ms apart appear
fused to our perceptual systems
–  10 frames/sec is enough to perceive a moving picture
–  Computer response < 100 ms feels instantaneous

•  Color blindness: many users (~8% of
all males) can't distinguish red from green

21

Design Principles for Visibility

•  Make system state visible: keep the user
informed about what's going on
–  Mouse cursor, selection highlight, status bar

•  Give prompt feedback
–  Response time rules-of-thumb

 < 0.1 sec seems instantaneous
 0.1-1 sec user notices, but no feedback needed
 1-5 sec display busy cursor
 > 1-5 sec display progress bar

22

Progress bars…

23

Efficiency
•  How quickly can an expert

operate the system – input,
commands, perceiving and
processing output

•  About the performance of the
I/O channel between the user
and the program

•  Fewer keystrokes to do a
task is usually more efficient;
but it’s subtle

•  The old Gimp interface used
only contextual, cascading
submenus – studies show it’s
actually slower to use than a
menu bar

24

Some Facts About Motor Processing

•  Open-loop control
–  Motor processor runs by itself
–  Cycle time is ~ 70 ms

•  Closed-loop control
–  Muscle movements (or their effect on the world)

are perceived and compared with desired result
–  Cycle time is ~ 240 ms

Senses Perceptual Cognitive Motor Muscles

Feedback

25

Pointing Tasks: Fitts’s Law

•  How long does it take to reach a target?

–  Moving mouse to target on screen
–  Moving finger to key on keyboard
–  Moving hand between keyboard and mouse

D

S

26

Analytical Derivation of Fitts’s Law

•  Moving your hand to a target is closed-loop control
•  Each cycle covers remaining distance D with error εD
•  After 2 cycles, within ε2D of target

Position Velocity

Time Time
27

Fitts’s Law

•  T = RT + MT = a + b log (D/S)

•  log(D/S) is the index of difficulty of the pointing task

D

S

Reaction time
Movement time

28

Path Steering Tasks

•  Fitts’s Law applies only if path to target is
unconstrained

•  But the task is much harder if path is constrained to a
tunnel

•  This is why cascading menus are slow!

29

D
S T = a + b (D/S)

Design Principles for Efficiency

•  Fitts's Law and Steering Law
–  Make important targets big, nearby, or at screen

edges
–  Avoid steering tasks

•  Provide shortcuts
–  Keyboard accelerators
–  Styles
–  Bookmarks
–  History

Source: Interface Hall of Shame

30

Mode Error

•  Modes: states in which actions have different
meanings
–  Vi’s insert mode vs. command mode
–  Drawing palette

•  Avoiding mode errors
–  Eliminate modes entirely
–  Visibility of mode
–  Spring-loaded or temporary modes
–  Disjoint action sets in different modes

31

Confirmation Dialogs

32

Confirmation Dialogs: “Are you sure?”

•  They make common
operations take two
button presses rather
than one

•  Frequent confirmations
dialogs lead to expert
users chunking it as
part of the operation

•  Reversibility (i.e. undo)
is a far better solution
than confirmation –
operations that are very
hard to reverse may
deserve confirmation,
however

33

Design Principles for Error Handling

•  Prevent errors as much as possible
–  Selection is better than typing
–  Avoid mode errors
–  Disable illegal commands
–  Separate risky commands from common ones

•  Use confirmation dialogs sparingly
•  Support undo
•  Good error messages

–  Precise
–  Speak the user’s language
–  Constructive help
–  Polite Source: Interface Hall of Shame

34

Simplicity

Source: Alex Papadimoulis
35

Simplicity

36

Design Principles for Simplicity

•  “Less is More”
–  Omit extraneous information,

graphics, features
•  Good graphic design

–  Few, well-chosen colors and fonts
–  Group with whitespace

•  Use concise language
–  Choose labels carefully

37

Document your system

•  Write the user manual
–  Program and UI metaphors
–  Key functionality
–  Not: exhaustive list of all menus

•  What is hard to describe?
•  Who is your target user?

–  Power users need a manual
–  Casual users might not
–  Piecemeal online help is no substitute

38

Lecture Outline

1. Design

2. Implement 3. Evaluate

design principles

low-fidelity prototypes user testing

39

Low-fidelity Prototypes

•  Paper is a very fast and effective prototyping tool
–  Sketch windows, menus, dialogs, widgets
–  Crank out lots of designs and evaluate them

•  Hand-sketching is OK – even preferable
–  Focus on behavior & interaction, not fonts & colors
–  Similar to design of your data structures & algorithms

•  Paper prototypes can even be executed
–  Use pieces to represent windows, dialogs, menus
–  Simulate the computer’s responses by moving pieces

around and writing on them

40

Paper Prototypes

41

Paper Prototypes

42

Paper Prototypes

43

User Testing

•  Start with a prototype
•  Write up a few representative tasks

–  Short, but not trivial
–  e.g.: “add this meeting to calendar”,

 “type this letter and print it”
•  Find a few representative users

–  3 is often enough to find obvious problems
•  Watch them do tasks with the prototype

44

How to Watch Users

•  Brief the user first (being a test user is stressful)
–  “I’m testing the system, not testing you”
–  “If you have trouble, it’s the system’s fault”
–  “Feel free to quit at any time”
–  Ethical issues: informed consent

•  Ask user to think aloud
•  Be quiet!

–  Don’t help, don’t explain, don’t point out mistakes
–  Sit on your hands if it helps
–  Two exceptions: prod user to think aloud (“what are

you thinking now?”), and move on to next task when
stuck

•  Take lots of notes
45

Watch for Critical Incidents

•  Critical incidents: events that strongly affect task
performance or satisfaction

•  Usually negative
–  Errors
–  Repeated attempts
–  Curses

•  Can also be positive
–  “Cool!”
–  “Oh, now I see.”

46

Summary

•  You are not the user
•  Keep human capabilities and design principles in mind
•  Iterate over your design
•  Write documentation
•  Make cheap, throw-away prototypes
•  Evaluate them with users

47

Further Reading

•  General books on usability
–  Johnson. GUI Bloopers: Don’ts and Dos for Software

Developers and Web Designers, Morgan Kaufmann, 2000.
–  Jef Raskin, The Humane Interface, Addison-Wesley 2000.
–  Hix & Hartson, Developing User Interfaces, Wiley 1995.

•  Low-fidelity prototyping

–  Rettig, “Prototyping for Tiny Fingers”, CACM April 1994.

•  Usability heuristics
–  Nielsen, “Heuristic Evaluation.” http://www.useit.com/papers/

heuristic/
–  Tognazzini, “First Principles.” http://www.asktog.com/basics/

firstPrinciples.html

48

