
HW7, Generics, Dijkstra’s

CSE 331 – Section 7

11/8/2012

Slides by Kellen Donohue,

with much material from Dan Grossman

Agenda

• hw4, hw6 being graded

• Midterm being graded, will be returned by
early next week

• hw7 out, due next Thursday

Generics and subtyping

• String is a subtype of Object

• Is List<Object> a subtype of List<String>?

• Is List<String> a subtype of List<Object>?

String

Object

List<String>

List<Object>

?

Generics and subtyping

List<String> ls =

 new ArrayList<String>();

List<Object> lo = ls;

List<String>

List<Object>

?

Generics and subtyping

List<String> ls =

 new ArrayList<String>();

List<Object> lo = ls;

lo.add(new Object());

String s = ls.get(0);

List<String>

List<Object>

?

Homework 7

• Modify your graph to use Generics

– Change your hw5 code where it is now

– Will have to update hw5, hw6 tests

• Implement Dijkstra’s algorithm

– Alternate search algorithm that uses edge weights

– Apply to Marvel graph, with edge weights
reciprocal to number of books in common

Note on folders

• MarvelPaths2.java looks in src/hw7/data

• HW7TestDriver.java looks in src/hw7/test

Shortest paths

• Done: BFS to find the minimum path length
from v to u

• Now: Weighted graphs

Given a weighted graph and node v,

find the minimum-cost path from v to every
node

• Unlike before, BFS will not work

Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
– Annoying when this happens with costs of flights

500

100
100 100

100

We will assume there are no negative weights

• Problem is ill-defined if there are negative-cost cycles

• Today’s algorithm is wrong if edges can be negative

Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
– Truly one of the “founders” of computer science;

this is just one of his many contributions

• The idea: reminiscent of BFS, but adapted to handle
weights
– Grow the set of nodes whose shortest distance has been

computed

– Nodes not in the set will have a “best distance so far”

– A priority queue will turn out to be useful for efficiency

Dijkstra’s Algorithm: Idea

• Initially, start node has cost 0 and all other nodes have cost


• At each step:
– Pick closest unknown vertex v

– Add it to the “cloud” of known vertices

– Update distances for nodes with edges from v

• That’s it!

A B

D
C

F H

E

G

0 2 4 

4

1

12



2 2 3

1 10 2
3

1 11

7

1

9

2

4 5

The Algorithm

1. For each node v, set v.cost =  and v.known =
false

2. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v,u) with weight w,

 c1 = v.cost + w // cost of best path through v to u

 c2 = u.cost // cost of best path to u previously known

 if(c1 < c2){ // if the path through v is better

 u.cost = c1

 u.path = v // for computing actual paths

 }

Important features

• When a vertex is marked known, the cost of the shortest path to

that node is known
– The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it might

still be found

• Note: The “Order Added to Known Set” is not important
– A detail about how the algorithm works (client doesn’t care)
– Not used by the algorithm (implementation doesn’t care)
– It is sorted by path-cost, resolving ties in some way

Example #1

A B

D
C

F H

E

G

0   









2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??

5

Order Added to Known Set:

Example #1

A B

D
C

F H

E

G

0 2  

4

1





2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B  2 A

C  1 A

D  4 A

E ??

F ??

G ??

H ??

5

Order Added to Known Set:

A

Example #1

A B

D
C

F H

E

G

0 2  

4

1

12



2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B  2 A

C Y 1 A

D  4 A

E  12 C

F ??

G ??

H ??

5

Order Added to Known Set:

A, C

Example #1

A B

D
C

F H

E

G

0 2 4 

4

1

12



2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D  4 A

E  12 C

F  4 B

G ??

H ??

5

Order Added to Known Set:

A, C, B

Example #1

A B

D
C

F H

E

G

0 2 4 

4

1

12



2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F  4 B

G ??

H ??

5

Order Added to Known Set:

A, C, B, D

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

12



2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G ??

H  7 F

5

Order Added to Known Set:

A, C, B, D, F

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G  8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

Features

• When a vertex is marked known,
the cost of the shortest path to that node is known
– The path is also known by following back-pointers

• While a vertex is still not known,

another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
– A detail about how the algorithm works (client doesn’t

care)
– Not used by the algorithm (implementation doesn’t care)
– It is sorted by path-cost, resolving ties in some way

Interpreting the Results
• Now that we’re done, how do we get the path

from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

Example #2

A B

C
D

F

E

G

0 











2

1
2

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

Example #2

A B

C
D

F

E

G

0 



2

1





2

1
2

vertex known? cost path

A Y 0

B ??

C  2 A

D  1 A

E ??

F ??

G ??

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A

Example #2

A B

C
D

F

E

G

0 6

7

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  6 D

C  2 A

D Y 1 A

E  2 D

F  7 D

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D

Example #2

A B

C
D

F

E

G

0 6

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  6 D

C Y 2 A

D Y 1 A

E  2 D

F  4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

Example #3

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive? No, each edge is processed only once

…

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 while(not all nodes are known) {

 b = find unknown node with smallest cost

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 a.cost = b.cost + weight((b,a))

 a.path = b

 }

}

O(|V|
)

O(|V|2)

O(|E|)

O(|V|2)

Priority Queue

• Increase efficiency by considering lowest cost
unknown vertex with sorting instead of
looking at all vertices

• PriorityQueue is like a queue, but returns
elements by lowest value instead of insertion
time

• Uses generics to require that elements are
comparable

Efficiency, second approach
Use pseudo code to determine asymptotic run-time

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 build-heap with all nodes

 while(heap is not empty) {

 b = deleteMin()

 if (b.known) continue;

 b.known = true

 for each edge (b,a) in G

 if(!a.known) {

 add(b.cost + weight((b,a))

 }

}

O(|V|
)

O(|V|log|V|)

O(|E|log|V|)

O(|E|log|V|)

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
– True initially: shortest path to start node has cost 0

– If it stays true every time we mark a node “known”, then by
induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t
discover a shorter path later!
– This holds only because Dijkstra’s algorithm picks the node with

the next shortest path-so-far

– The proof is by contradiction…

Correctness: The Cloud (Rough Sketch)

Spring 2012 38 CSE332: Data Abstractions

 The Known
Cloud

v Next shortest path from
inside the known cloud

w

Better path to
v? No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– Else we would have picked a node closer to the cloud than v

• Suppose the actual shortest path to v is different

– It won’t use only cloud nodes, or we would know about it

– So it must use non-cloud nodes. Let w be the first non-cloud node on
this path. The part of the path up to w is already known and must be
shorter than the best-known path to v. So v would not have been
picked. Contradiction.

Use in HW

• Will use in HW7 to find paths between
characters, weighted so characters that
commonly appear together have short paths
between them

• Will use in HW8/9 to map distances across
campus

