
CSE 331

Software Design & Implementation

Hal Perkins

Winter 2012

Java Classes, Interfaces, and Types

1

Classes, Interfaces, Types

• The fundamental unit of programming in Java is the class
definition – everything is defined in some class

• But Java also provides interfaces…

• Classes can extend other classes and implement
interfaces…

• Interfaces can extend other interfaces…

• Some classes are abstract…

• And somehow this is all related to types!

• How does this work? How are these things connected?
What is their intended use?

– More in the fullness of time, but let’s get started…

2

Classes, Objects, and Java

Ignoring static cruft for now…

• Everything is an instance of a class (an object)

• Every class defines data and methods

• Every class extends exactly one other class

– Object if no superclass is explicitly named

• A class inherits superclass fields and methods

• Every class also defines a type – i.e., class Foo
defines type Foo, and also has all inherited types,
e.g., Object

– Not explored in depth today, but later…

So a class is both specification and implementation

 3

But…

How do we express relationships between classes?

• Inheritance captures what we want if one class “is-a”
specialization of another

 class Cat extends Mammal { … }

• But that’s not really right if classes share a behavior
or concept but don’t have an “is-a” relationship:

– E.g., Strings, Sets, and Dates are “Comparable”
(we can ask if x is “less than” y) but there are no
“is-a” relationships involved

• And what if we want a class with multiple properties?

– Can’t extend multiple classes, even if that would
do it…

4

Java Interfaces

• Pure type declaration. Example (without generics):

 public interface Comparable {

 int compareTo(Object other);

 }

• Defines a type (Comparable here). Can contain:

– Method specifications (no implementations)

– Named constants

• Interface elements are implicitly public

– Constants are also implicitly final, static

– Methods are also implicitly abstract (means: specified
only, no implementation provided…)

• Cannot create instances of interfaces – they’re abstract and do
not contain implementations of methods

– e.g., can’t do Comparable c = new Comparable();

5

Implementing Interfaces

• A class can implement one or more interfaces:

class Gadget implements Comparable{ … }

• Semantics:

– The implementing class and its instances have the

interface type(s) as well as the class type

– The class must provide or inherit an

implementation of all methods defined in the

interface(s)

• Approximately correct – need to fix for abstract

classes (later)

6

Using Interface Types

• An interface defines a type, so we can declare

variables and parameters of that type

• Key point: A variable with an interface type can refer

to an object of any class implementing that type

• Examples:
List<String> x = new ArrayList<String>();

List<String> y = new LinkedList<String>();

– Variables x and y both have type List<String>

7

Programming with Interface Types

• This is not new. You’ve used this with the Java

collection classes:

 class ArrayList implements List {…}

 class LinkedList implements List {…}

(Generic types omitted above for simplicity for now)

• Client code:

 void mangle(List victim) { … }

– Method argument can be anything that has type
List (like an ArrayList or LinkedList)

8

Guidelines for Interfaces

• Provide interfaces for significant types / abstractions

• Write code using interface types like Map wherever
possible; only use specific classes like HashMap or
TreeMap when you need them (creating new objects is the
most obvious example)

– Allows code to work with different implementations later

• Consider providing classes with complete or partial
interface implementation for direct use or subclassing

• Both interfaces and classes are appropriate in various
circumstances

9

