Reasoning about code

CSE 331
University of Washington

Michael Ernst

Reasoning about code

Determine what facts are true during execution
x>0

for all nodes n: n.next.previous ==
array a is sorted

X +y =2
if x '= null,then x.a > x.b
Applications:

Ensure code is correct (via reasoning or testing)
Find errors

Understand why code is incorrect

Verify a representation invariant
Does this code work properly?

class Namelist {

// representation invariant: 0 £ index < names.length
int index;
String[] names;

void addName (String name) {
index++;
if (index < names.length) {
names [index] = name;
}
}

What must the caller do?

The programmer forgot to document this method.

String[] parseName (String name) ({
int commapos = name.indexOf(",");
String firstName = name.substring (0, commapos) ;
String lastName = name.substring(commapos + 2) ;
return new String[] { lastName, firstName };

What input produces [“Doe”, “John”]?
What input produces [“oe”, “John”]?
Under what circumstances does it work properly?

Web server using SQL database

String userInput -’
String query = “SELECT * FROM users ”

+ “WHERE name=‘'" + userInput + “'7;
statement.executeUpdate (query) ;

query =

User inputs:

query

WHERE name=‘a’
a’or‘1’=1

or ‘1’='1

“SELECT * FROM users

WHERE name=‘a’

Automatic Creation of S0L Injection and Cross-Site Scripting A fiacks

Adem Kierun Fhilip 1. Guo
MIT Staafont leswereaty
ki o wad L s e #s wanfond ada
Absirsci

W prowte d Anding fecwy valRrraE
ey &y Wik applicasons. S Ingeonkon. | SOET) snd croes-
e ICripaRg CLSE) aawis are wideiprasd fores of asack
i ik ol Srdoker oty o AP w ol giplicankon wo
aoresr or mod|h aser dave and o ree madiolows codes m
i WO S) Sevacds Jonle f SecoRd oniler oF BT R

L

Karthick Jsyaraman
Symcwe [nvenity
gy v e

Michael D. Emst
Ui ity of Washingion
aw sl 8 o weshasgion wio

Porvicas approsches o ideoiifring S0L1 amd X33 vul-
merubilili and preevmnag eploet il delensive cod-
g sty wnalysli dvorsk semikding ol B peien-
on. Fach of thes spproaches hae it own merii, bk sleo
oifier oppormbities for mprosnest. Delmass codag (4]
= afred funie and fag ke Iewiiling eulaling siltaaie 1
e e |ibwarie s, Static msbysis foohs [19, 7F] can prodooe
fals wamngn mid do Dot cHaly Onorel sxEmples of in

[r— e ! T

T e IR T B

or ‘1’='1

EAR - DID HE
AK SOMETHING?

WAY = /

i

// execute DB query

Is it possible to retrieve all user information?
“SELECT * FROM users

r 7

r 77

http://xkcd.com/327/

DID YOU REALLY WELL, WEVE LOST THIS
NAME YOUR SON YEAR'S STUDENT RECORDS.

Robert); DROP T HOPE YOURE HAPPY.

TABLE Students;—- 7 \II
AND T HOPE

~OH.YES UTNE “~ YOUVE LEARNED
BOBBY TABLES, T0 SANITIZE YOUR
WE CALL HIM. DATABASE INPUTS.

Types of reasoning

* Forward reasoning:
— verify that code behaves properly
— verify that representation invariants are satisfied

* Backward reasoning:
— verify that code behaves properly
— determine the input that caused an error
— find security flaw

Forward reasoning

You know what is true before running the code
What is true after running the code?
Given a precondition, what is the postcondition?
Example:
// precondition: xis even
X=X+ 3;
y = 2X;
X=5;
// postcondition: ??
Application:
Rep invariant holds before running code
Does it still hold after running code?

Backward reasoning

You know what you want to be true after running the code
What must be true beforehand in order to ensure that?
Given a postcondition, what must the precondition be?

Example:
// precondition: ??
X=X+3;
y = 2X;
X=05;
// postcondition: y > x
What was your reasoning?
Application:
(Re-)establish rep invariant at method exit: what requires?

Reproduce a bug: what must the input have been?
Exploit a bug

Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

Helps you understand what will happen (simulates the
code)

Introduces facts that may be irrelevant to the goal
Set of current facts may get large

Takes longer to realize that the task is hopeless
Backward reasoning is usually more helpful

Helps you understand what should happen

Given a specific goal, indicates how to achieve it
Given an error, gives a test case that exposes it

Reasoning: putting together statements

assert x >= 0;

IIx>0
z = 0;
x>0 & z=0
if (x '= 0) {
I[Ix>0 & z=0
zZ = X;
x>0 & z=Xx
} else {
I[Ix=0 & z=0
z =z +1
[[x=0 & z=1
}
x>0 & z>0

assert z > 0;

Using forward reasoning: Does the postcondition hold?

Forward reasoning with a loop

assert x >= 0;

/x>0
i=x;
x>0 & i=X
z = 0;
x>0 & i=x & z=0
while (i '= 0) {
/] 2?7
z =z + 1;
i=13i-1;
/] ?2?7?
}
x>0 & i=0 & z=X
assert x == z;

Infinite number of paths through this code
How do you know that the overall conclusion is correct?
Induction on the length of the computation

