Loop Invariant Examples

Page 1 - Problems
Page 3 - Help (Code)
Page 5 - Solutions (to Help Code)

Problems:
Exercise 0

@param a list of n doubles
@return the average of the list
average(double[] a)

/I Yes, this should be as easy as it sounds

Exercise 1

@param a pre-computed average
@param the number of values used in the average
@param a list of n doubles
@return a new weighted average of the old average combined with the values of array a
runningAverage(double avg, int count, double[] a)
/I There are 3 components to an average: valuesum, valuecount, average.
/I The formula you are used to is average = valuesum / valuecount
/[When you are provided with only 2 components, it is easy to compute the third.

Exercise 2

@requires n >= 2
@return a list of all primes from 2 to n inclusive.
allPrimes(int n)
/I ' You can create an auxillary list/queue/stack if it helps
/I Remember that a prime number cannot be divided by any other number excepting 1 and itself

Exercise 3

Euclidian Greatest Common Divisor algorithm
(Careful, this one is a doosey)

@returns the greatest common divisor of a and b
int gcd(int a, int b) {
/I remember, the GCD of two numbers is the greatest number that can divide both a & b
/[without a remainder. e.x. gcd(6, 9) =3 { 6 divisible by [1,2,3,6] & 9 divisible by [1,3,9] }
/I Also, don’t be afraid to set conditions in your invariant.
Il ex.{xly =a|| y==0 } is equivalent to saying { if y!=0 then x/y = a }
/I These can be useful for getting past the set-up stage of the loop with your invariant... provided
/['your conditions are sure to fall away by the end of the loop.

Help:
Exercise 0
@param a list of n doubles

@return the average of the list
average(double[] a) {

sum =0

inti=0

while (i < a.length) {
sum +=ali]
i++

return sum / a.length

Exercise 1

@param a pre-computed average
@param the number of value used in the average
@param a list of n doubles
@return the a new weighted average of the old average combined with the values of array a
runningAverage(double avg, int count, double[] a) {
newavg = avg
inti=0
while (i < a.length) {
newcount = (count + i)
newtotal = (newavg * newcount) + a[i]
newavg = newtotal / (newcount + 1)
|++
}

return newavg

}

Exercise 2
Here’s some pseudo code you can follow

@requires n >= 2
@return a list of all primes from 2 to n inclusive.
allPrimes(int n) {
create a list Q and fill it with the consecutive integers 2 through n inclusive.
create an empty list P to store primes.
p=0
while (p <=n) {
obtain the next prime p by removing the first value in Q.
put p at the end of P.
loop through Q, eliminating numbers divisible by p.

}

return P

}

Exercise 3

int gcd(int a, int b) {

intx = a;

inty =b;

while(y !=0){
intr=x%y;
X=Yy,
y=rnr

}

return Xx;

}

Solutions:
/I Disclaimer, if you think you’ve found an issue with a solution, please let us know!
/' Us TAs are in fact capable of making mistakes on some of these complicated proofs.

Exercise 0

@param a list of n doubles
@return the average of the list
average(double[] a) {
sum =0
inti=0
{ average a[0...i-1] =sum/i}
while (i < a.length) {
{ average a[0...i-1] =sum/i}
sum +=ali]
1++
{average a[0...i-1] =sum/i}
}
{ average a[0...i-1] =sum /i }
return sum / a.length

}

Exercise 1

@param a pre-computed average
@param the number of value used in the average
@param a list of n doubles
@return the a new weighted average of the old average combined with the values of array a
runningAverage(double avg, int count, double[] a) {
newavg = avg
inti=0
{ newavg = running average including elements a[0...i-1] }
while (i < a.length) {
{ newavg = running average including elements a[0...i-1] }
newcount = (count + i)
newtotal = (newavg * newcount) + a[i]
newavg = newtotal / (newcount + 1)
1++
{ newavg = running average including elements a[0...i-1] }
}
{ newavg = running average including elements a[0...i-1] }
return newavg

}

Exercise 2

@requires n >= 2
@return a list of all primes from 2 to n inclusive.
allPrimes(int n) {
create a list Q and fill it with the consecutive integers 2 through n inclusive.
create an empty list P to store primes.
p=0
{ array P contains all primes from [2...p] }
while (p <=n) {
{ array P contains all primes from [2...p] }
obtain the next prime p by removing the first value in Q.
put p at the end of P.
loop through Q, eliminating numbers divisible by p.
{ array P contains all primes from [2...p] }
}
{ array P contains all primes from [2...p] }
return P

Exercise 3

/I Notice how the OR conditions { x>Y, x<y } carefully allow us to setup the loop without
/l invalidating the main part of the invariant { X%x = y%Y && Y%x =0}

int gcd(int a, int b) {
intx=a; 14
inty=Db; 6
{ X=x, Y=y }
{inv: (X%x =y%Y && (Y%x =0 || x>Y)) || x<y}
while(y !=0){
{inv: (X%x =y%Y && (Y%x =0 || x>Y)) || x<y}
intr=x%;
X=Y;
y=r
{inv: (X%x =y%Y && (Y%x =0 || x>Y)) || x<y}
}
{inv: (X%x =y%Y && (Y%x =0 || x>Y)) || x<y}
return x;

