CSE 331 Software Design & Implementation

Dan Grossman Spring 2015

Lecture 2 – Reasoning About Code With Logic (Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)

Announcements

- All sections have moved location:
 - Section AA 8:30-9:20 LOW206
 - Section AB 9:30-10:20 LOW206
 - Section AA 10:30-11:20 LOW202
- You should have received an email about talk-to-the-professor sign-ups
- · Overloads to be decided by Friday: unfortunately many
- Next few lectures: read lecture notes posted on website in addition to flipping through slides

CSE 331 Spring 2015

2

Reasoning about code

Determine what facts are true as a program executes

Under what assumptions

Examples:

- If x starts positive, then y is 0 when the loop finishes
- Contents of the array that arr refers to are sorted
- Except at one code point, x + y == z
- For all instances of Node n,
- n.next == null V n.next.prev == n

- ...

CSE 331 Spring 2015

Our approach

- Hoare Logic: a 1970s approach to logical reasoning about code
 For now, consider just variables, assignments, if-statements, while-loops
 - So no objects or methods
- · This lecture: The idea, without loops, in 3 passes
 - 1. High-level intuition of forward and backward reasoning
 - 2. Precise definition of logical assertions, preconditions, etc.
 - 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

Why do this?

- Essential complement to *testing*, which we will also study
 - Testing: Actual results for some actual inputs
 - Logical reasoning: Reason about whole classes of inputs/states at once ("If x > 0, ...")
 - Prove a program correct (or find bugs trying)
 - · Understand why code is correct
- · Stating assumptions is the essence of specification
 - "Callers must not pass null as an argument"
 - "Callee will always return an unaliased object"
 - ...

CSE 331 Spring 2015

4

Why?

- Programmers rarely "use Hoare logic" in this much detail
 For simple snippets of code, it's overkill
 - Gets very complicated with objects and aliasing
 - But occasionally useful for loops and data with subtle invariants
 - Examples: Homework 0, Homework 2
- · Also it's an ideal setting for the right logical foundations
 - How can logic "talk about" program states?
 - How does code execution "change what is true"?
 - What do "weaker" and "stronger" mean?

This is all essential for *specifying library-interfaces*, which *does* happen All the Time in The Real World[®] (coming lectures)

CSE 331 Spring 2015

3

Example

Forward reasoning:

Suppose we initially know (or assume) w > 0

// w > 0 x = 17; $// w > 0 \land x == 17$ y = 42; $// w > 0 \land x == 17 \land y == 42$ z = w + x + y; $// w > 0 \land x == 17 \land y == 42 \land z > 59$

7

9

11

Then we know various things after, including z > 59

CSE 331 Spring 2015

Example

```
Backward reasoning:

- Suppose we want z to be negative at the end

// w + 17 + 42 < 0

x = 17;

// w + x + 42 < 0
```

y = 42; // w + x + y < 0 z = w + x + y; // z < 0

Then we know initially we need to know/assume w < -59
 Necessary and sufficient

essary and sufficient

CSE 331 Spring 2015

8

Forward vs. Backward, Part 1

- Forward reasoning:
 - Determine what follows from initial assumptions
 - Most useful for maintaining an invariant
- Backward reasoning
 - Determine sufficient conditions for a certain result
 - · If result desired, the assumptions suffice for correctness
 - · If result undesired, the assumptions suffice to trigger bug

CSE 331 Spring 2015

Forward vs. Backward, Part 2

- · Forward reasoning:
 - Simulates the code (for many "inputs" "at once")
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal
- · Backward reasoning
 - Often more useful: Understand what each part of the code contributes toward the goal
 - "Thinking backwards" takes practice but gives you a powerful new way to reason about programs

CSE 331 Spring 2015

10

Conditionals

```
// initial assumptions
if(...) {
    ... // also know test evaluated to true
} else {
    ... // also know test evaluated to false
}
// either branch could have executed
```

Two key ideas:

- 1. The precondition for each branch includes information about the result of the test-expression
- 2. The overall postcondition is the disjunction ("or") of the postcondition of the branches

```
CSE 331 Spring 2015
```

Example (Forward)

Assume initially $x \ge 0$ // $x \ge 0$ z = 0;// $x \ge 0 \land z == 0$ if $(x != 0) \{$ // $x \ge 0 \land z == 0 \land x != 0 \text{ (so } x > 0)$ z = x;// ... $\land z > 0$ } else { // $x \ge 0 \land z == 0 \land ! (x!=0) \text{ (so } x == 0)$ z = x + 1;// ... $\land z == 1$ } // (... $\land z > 0) \lor (... \land z == 1) \text{ (so } z > 0)$

CSE 331 Spring 2015

Our approach

- · Hoare Logic, a 1970s approach to logical reasoning about code
 - [Named after its inventor, Tony Hoare]
 - Considering just variables, assignments, if-statements, while-loops
 - · So no objects or methods
- · This lecture: The idea, without loops, in 3 passes
 - 1. High-level intuition of forward and backward reasoning
 - 2. Precise definition of logical assertions, preconditions, etc.
 - 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

CSE 331 Spring 2015

What an assertion means

- An *assertion* (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)
- A program state is something that "given" a variable can "tell you" its contents
 - Or any expression that has no side-effects
- An assertion *holds* for a program state, if evaluating using the program state produces *true*
 - Evaluating a program variable produces its contents in the state
 - Can think of an assertion as representing the set of (exactly the) states for which it holds

CSE 331 Spring 2015

Examples

Valid or invalid?

(Assume all variables are integers without overflow)

```
• \{x \mid = 0\} \ y = x^*x; \ \{y > 0\}
```

```
• {z != 1} y = z * z; {y != z}
```

```
• \{x \ge 0\} y = 2*x; \{y \ge x\}
```

- {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}
- {true} (x = y; z = x;) {y=z}
- {x=7 \ y=5}

```
(tmp=x; x=tmp; y=x;)
{y=7 \land x=5}
```

```
CSE 331 Spring 2015
```

13

15

Some notation and terminology

- The "assumption" before some code is the precondition
- The "what holds after (given assumption)" is the postcondition
- Instead of writing pre/postconditions after //, write them in {...}
 This is not Java
 - How Hoare logic has been written "on paper" for 40ish years

$$\{ w < -59 \}$$

x = 17;

- $\{ w + x < -42 \}$
- In pre/postconditions, = is equality, not assignment

Math's "=", which for numbers is Java's ==
$$\{ w > 0 \land x = 17 \}$$

y = 42;{ w > 0 $\land x = 17 \land y = 42$ } CSE 331 Spring 2015

A Hoare Triple

- A Hoare triple is two assertions and one piece of code:
 {P} S {Q}
 - *P* the precondition
 - S the code (statement)
 - Q the postcondition
- A Hoare triple { P } S { Q } is (by definition) valid if:
 - For all states for which *P* holds, executing *S* always produces a state for which *Q* holds
 - Less formally: If P is true before S, then Q must be true after
 - Else the Hoare triple is invalid
 - CSE 331 Spring 2015

Examples

Valid or invalid?

- (Assume all variables are integers without overflow)
- $\{x \mid = 0\} y = x * x; \{y > 0\}$ valid
- {z != 1} y = z*z; {y != z} invalid
- $\{x \ge 0\}$ y = 2*x; $\{y \ge x\}$ invalid
- {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5} valid
- {true} (x = y; z = x;) {y=z} valid
- {x=7 \lambda y=5} invalid
 (tmp=x; x=tmp; y=x;)
 {y=7 \lambda x=5}

```
CSE 331 Spring 2015
```

14

16

Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,
 assert x > 0 && y < x;
 - Similar to our assertions
 - Evaluate using a program state to get true or false
 - Uses Java syntax
- In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic
- This week: we are reasoning about the code, not running it on some input

CSE 331 Spring 2015

The general rules

- So far: Decided if a Hoare triple was valid by using our understanding of programming constructs
- Now: For each kind of construct there is a general rule
 - A rule for assignment statements
 - A rule for two statements in sequence
 - A rule for conditionals
 - [next lecture:] A rule for loops
 - ...

CSE 331 Spring 2015

20

Assignment statements

 $\{P\} x = e; \{Q\}$

- Let Q' be like Q except replace every x with e
- Triple is valid if:
 For all program states, if P holds, then Q' holds
 That is, P implies Q', written P => Q'
- Example: {z > 34} y=z+1; {y > 1}
 Q' is {z+1 > 1}

CSE 331 Spring 2015

21

19

Conditionals

{P} if(b) S1 else S2 {Q}

- Triple is valid if and only if there are assertions Q1, Q2 such that
 - {P A b}S1{Q1} is valid, and
 - {P A !b}S2{Q2} is valid, and
 - Q1 V Q2 implies Q
- Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
 Let Q1 be {y > 7} (other choices work too)
 - Let Q2 be {y = 20} (other choices work too)
 - Use assignment rule to show {true $\Lambda x > 7$ }y=x; {y>7}
 - Use assignment rule to show {true $\Lambda x \le 7$ }=20;{y=20}
 - Indicate $y>7 \vee y=20$ implies y>5

Sequences

 $\{P\} \ S1; S2 \ \{Q\}$ • Triple is valid if and only if there is an assertion R such that $- \{P\}S1\{R\} \text{ is valid, and}$ $- \{R\}S2\{Q\} \text{ is valid}$ • Example: $\{z \ge 1\} \ y=z+1; \ w=y^*y; \ \{w > y\} \text{ (integers)}$ $- \text{ Let } R \text{ be } \{y > 1\}$ $- \text{ Show } \{z \ge 1\} \ y=z+1; \ \{y > 1\}$ $- \text{ Show } \{z \ge 1\} \ y=z+1; \ \{y > 1\}$ $- \text{ Show } \{z > 1\} \ w=y^*y; \ \{w > y\}$ $- \text{ Use rule for assignments: } z \ge 1 \text{ implies } z+1 > 1$ $- \text{ Show } \{y > 1\} \ w=y^*y; \ \{w > y\}$ $- \text{ Use rule for assignments: } y > 1 \text{ implies } y^*y > y$

CSE 331 Spring 2015

22

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code

 Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods
- · This lecture: The idea, without loops, in 3 passes
 - 1. High-level intuition of forward and backward reasoning
 - 2. Precise definition of logical assertions, preconditions, etc.
 - 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

CSE 331 Spring 2015

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:

- P1 is stronger than P2
- P2 is weaker than P1
- Whenever P1 holds, P2 also holds
- So it is more (or at least as) "difficult" to satisfy P1
- The program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it's a stronger set of obligations/requirements

CSE 331 Spring 2015

Examples

- $\mathbf{x} = 17$ is stronger than $\mathbf{x} > 0$
- x is prime is neither stronger nor weaker than x is odd
- x is prime and x > 2 is stronger than x is odd and x > 2

• ...

CSE 331 Spring 2015

26

Why this matters to us

•	Suppose:
---	----------

- {P}S{Q}, and
- P is weaker than some P1, and
- Q is stronger than some Q1
- Then: {P1}S{Q} and {P}S{Q1} and {P1}S{Q1}
- · Example:
 - P is x >= 0
 P1 is x > 0
 S is y = x+1
 Q is y > 0
 - Q1 is y >= 0

CSE 331 Spring 2015

Weakest preconditions

- wp(x = e;, Q) is Q with each x replaced by e
 Example: wp(x = y*y;, x > 4) = y*y > 4, i.e., |y| > 2
- wp(S1;S2,Q) is wp(S1,wp(S2,Q))
 - l.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
 - Example: wp((y=x+1; z=y+1;), z > 2) =
 - (x + 1)+1 > 2, i.e., x > 0
- wp(if b S1 else S2, Q) is this logic formula: (b A wp(S1,Q)) V (!b A wp(S2,Q))
 - (In any state, b will evaluate to either true or false...)
 - (You can sometimes then simplify the result)

So...

25

27

29

- For backward reasoning, if we want {P}S{Q}, we could instead:
 Show {P1}S{Q}, and

 - Show P => P1
- Better, we could just show {P2}S{Q} where P2 is the weakest precondition of Q for S
 - Weakest means the most lenient assumptions such that <u>Q</u> will hold
 - Any precondition P such that {P}S{Q} is valid will be stronger than P2, i.e., P => P2
- Amazing (?): Without loops/methods, for any s and g, there
 exists a unique weakest precondition, written wp(s,g)
 - Like our general rules with backward reasoning

CSE 331 Spring 2015

28

Simple examples

- If S is x = y*y and Q is x > 4, then wp(S,Q) is y*y > 4, i.e., |y| > 2
- If S is y = x + 1; z = y 3; and Q is z = 10, then wp(S,Q) ...
 = wp(y = x + 1; z = y 3;, z = 10)
 = wp(y = x + 1;, wp(z = y 3;, z = 10))
 = wp(y = x + 1;, y 3 = 10)
 = wp(y = x + 1;, y = 13)
 = x+1 = 13

= x = 12

CSE 331 Spring 2015

Bigger example

S is if (x < 5) {			
$\mathbf{x} = \mathbf{x}^* \mathbf{x};$			
} else {			
$\mathbf{x} = \mathbf{x} + 1;$			
}			
Q is x >= 9			
wp(S, x >= 9)			
$= (\mathbf{x} < 5 \land wp(\mathbf{x} = \mathbf{x} \star \mathbf{x})$	x;, x >= 9))		
\vee (x >= 5 \wedge wp(x =	x+1;, x >= 9))		
$= (\mathbf{x} < 5 \land \mathbf{x} \times \mathbf{x} > = 9$)		
\vee (x >= 5 \wedge x+1 >	= 9)		
$= (x <= -3) \lor (x >= 3)$	$\Lambda x < 5$		
$\vee (\mathbf{x} \geq 8)$	<	+ + →	+ +>
	-4-3-2-1012	3 4 5	6789
CS	SE 331 Spring 2015		31

If-statements review

Forward reasoning	Backward reasoning
<pre>{P} if B {P ∧ B} \$1 {Q1}</pre>	<pre>{ (B ^ wp(S1, Q))</pre>
else {P ∧ !B} s2 {Q2} {Q1 ∨ Q2}	{Q} else {wp(S2, Q)} s2 {Q} {Q}
	CSE 331 Spring 2015

"Correct"

- If wp(S,Q) is true, then executing S will always produce a state where **Q** holds
 - true holds for every program state

One more issue

· With forward reasoning, there is a problem with assignment: - Changing a variable can affect other assumptions

```
· Example:
      {true}
      w=x+y;
      \{w = x + y;\}
      x=4;
      \{w = x + y \land x = 4\}
      y=3;
      \{w = x + y \land x = 4 \land y = 3\}
   But clearly we do not know w=7!
```

CSE 331 Spring 2015

34

32

The fix

•

When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable - So you refer to the "old contents"

CSE 331 Spring 2015

```
Corrected example:
   {true}
   w=x+y;
   \{w = x + y;\}
   x=4;
   \{w = x1 + y \land x = 4\}
   y=3;
```

```
\{w = x1 + y1 \land x = 4 \land y = 3\}
```

CSE 331 Spring 2015

35

33

Useful example

- · Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these "names" are not in the program
 - Use these extra variables to avoid "forgetting" "connections"

```
{x = x_pre \land y = y_pre}
tmp = x;
{x = x_pre \land y = y_pre \land tmp=x}
\mathbf{x} = \mathbf{y};
{x = y \land y = y_pre \land tmp=x_pre}
y = tmp;
{x = y\_pre \land y = tmp \land tmp=x\_pre}
                     CSE 331 Spring 2015
```