
CSE 331

Software Design & Implementation

Dan Grossman

Spring 2015

Data Abstraction: Abstract Data Types (ADTs)
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)

Outline

This lecture:

1. What is an Abstract Data Type (ADT)?

2. How to specify an ADT?

3. Design methodology for ADTs

Very related next lectures:

• Representation invariants

• Abstraction functions

Two distinct, complementary ideas for reasoning about ADTs

2 CSE331 Spring 2015

Procedural and data abstractions

Procedural abstraction:

– Abstract from details of procedures (e.g., methods)

– Specification is the abstraction

• Abstraction is the specification

– Satisfy the specification with an implementation

Data abstraction:

– Abstract from details of data representation

– Also a specification mechanism

• A way of thinking about programs and design

– Standard terminology: Abstract Data Type, or ADT

3 CSE331 Spring 2015

Why we need Data Abstractions (ADTs)

Organizing and manipulating data is pervasive

– Inventing and describing algorithms is less common

Start your design by designing data structures

– How will relevant data be organized

– What operations will be permitted on the data by clients

– Cf. CSE 332

Potential problems with choosing a data abstraction:

– Decisions about data structures often made too early

– Duplication of effort in creating derived data

– Very hard to change key data structures (modularity!)

4 CSE331 Spring 2015

An ADT is a set of operations

• ADT abstracts from the organization to meaning of data

• ADT abstracts from structure to use

• Representation should not matter to the client

– So hide it from the client

Instead, think of a type as a set of operations

 create, getBase, getAltitude, getBottomAngle, …

Force clients to use operations to access data

class RightTriangle {

 float base, altitude;

}

class RightTriangle {

 float base, hypot, angle;

}

5 CSE331 Spring 2015

Are these classes the same?

class Point { class Point {

 public float x; public float r;

 public float y; public float theta;

} }

Different: cannot replace one with the other in a program

Same: both classes implement the concept “2-d point”

Goal of ADT methodology is to express the sameness:

– Clients depend only on the concept “2-d point”

6 CSE331 Spring 2015

Benefits of ADTs

If clients “respect” or “are forced to respect” data abstractions…

– For example, “it’s a 2-D point with these operations…”

• Can delay decisions on how ADT is implemented

• Can fix bugs by changing how ADT is implemented

• Can change algorithms

– For performance

– In general or in specialized situations

• …

We talk about an “abstraction barrier”

– A good thing to have and not cross (also known as violate)

CSE331 Spring 2015 7

Concept of 2-d point, as an ADT

class Point {

 // A 2-d point exists in the plane, ...

 public float x();

 public float y();

 public float r();

 public float theta();

 // ... can be created, ...

 public Point(); // new point at (0,0)

 public Point centroid(Set<Point> points);

 // ... can be moved, ...

 public void translate(float delta_x,

 float delta_y);

 public void scaleAndRotate(float delta_r,

 float delta_theta);

}

 8

Observers

Creators/

Producers

Mutators

CSE331 Spring 2015

Point

x

y

r

theta

translate

scale_rot

rest of

program

abstraction

barrier

Abstract data type = objects + operations

• Implementation is hidden

• The only operations on objects of the type are those provided by

the abstraction

clients implementation

9 CSE331 Spring 2015

Specifying a data abstraction

• A collection of procedural abstractions

– Not a collection of procedures

• An abstract state

– Not the (concrete) representation in terms of fields, objects, …

– “Does not exist” but used to specify the operations

– Concrete state, not part of the specification, implements the

abstract state

• More in upcoming lecture

• Each operation described in terms of “creating”, “observing”,

“producing”, or “mutating”

– No operations other than those in the specification

10 CSE331 Spring 2015

Specifying an ADT

Mutable

1. overview

2. abstract state

3. creators

4. observers

5. producers (rare)

6. mutators

Immutable

1. overview

2. abstract state

3. creators

4. observers

5. producers

6. mutators

• Creators: return new ADT values (e.g., Java constructors)

• Producers: ADT operations that return new values

• Mutators: Modify a value of an ADT

• Observers: Return information about an ADT

 CSE331 Spring 2015 11

Implementing an ADT

To implement a data abstraction (e.g., with a Java class):

– See next two lectures

– This lecture is just about specifying an ADT

– Nothing about the concrete representation appears in the

specification

12 CSE331 Spring 2015

Poly, an immutable datatype: overview

/**

 * A Poly is an immutable polynomial with

 * integer coefficients. A typical Poly is

 * c0 + c1x + c2x
2 + ...

 **/

class Poly {

Overview:

– State whether mutable or immutable

– Define an abstract model for use in operation specifications

• Difficult and vital!

• Appeal to math if appropriate

• Give an example (reuse it in operation definitions)

– State in specifications is abstract, not concrete

13

Abstract state (specification fields)

CSE331 Spring 2015

Poly: creators

 // effects: makes a new Poly = 0

 public Poly()

 // effects: makes a new Poly = cxn

 // throws: NegExponent if n < 0

 public Poly(int c, int n)

Creators

– New object, not part of pre-state: in effects, not modifies

– Overloading: distinguish procedures of same name by
parameters (Example: two Poly constructors)

Footnote: slides omit full JavaDoc comments to save space; style might

not be perfect either – focus on main ideas

14 CSE331 Spring 2015

Poly: observers

// returns: the degree of this,

// i.e., the largest exponent with a

// non-zero coefficient.

// Returns 0 if this = 0.

public int degree()

// returns: the coefficient of the term

// of this whose exponent is d

// throws: NegExponent if d < 0

public int coeff(int d)

15 CSE331 Spring 2015

Notes on observers

Observers

– Used to obtain information about objects of the type

– Return values of other types

– Never modify the abstract value

– Specification uses the abstraction from the overview

 this

– The particular Poly object being accessed

– Target of the invocation

– Also known as the receiver

Poly x = new Poly(4, 3);

int c = x.coeff(3);

System.out.println(c); // prints 4

16 CSE331 Spring 2015

Poly: producers

// returns: this + q (as a Poly)

public Poly add(Poly q)

// returns: the Poly equal to this * q

public Poly mul(Poly q)

// returns: -this

public Poly negate()

17 CSE331 Spring 2015

Notes on producers

• Operations on a type that create other objects of the type

• Common in immutable types like java.lang.String

– String substring(int offset, int len)

• No side effects

– Cannot change the abstract value of existing objects

18 CSE331 Spring 2015

IntSet, a mutable datatype:

overview and creator

// Overview: An IntSet is a mutable,

// unbounded set of integers. A typical

// IntSet is { x1, ..., xn }.

class IntSet {

 // effects: makes a new IntSet = {}

 public IntSet()

19 CSE331 Spring 2015

IntSet: observers

// returns: true if and only if x this

public boolean contains(int x)

// returns: the cardinality of this

public int size()

// returns: some element of this

// throws: EmptyException when size()==0

public int choose()

20 CSE331 Spring 2015

IntSet: mutators

// modifies: this

// effects: thispost = thispre {x}

public void add(int x)

// modifies: this

// effects: thispost = thispre - {x}

public void remove(int x)

21 CSE331 Spring 2015

Notes on mutators

• Operations that modify an element of the type

• Rarely modify anything (available to clients) other than this

– List this in modifies clause (if appropriate)

• Typically have no return value

– “Do one thing and do it well”

– (Sometimes return “old” value that was replaced)

• Mutable ADTs may have producers too, but that is less common

22 CSE331 Spring 2015

