
SECTION 1:
CODE REASONING +
VERSION CONTROL +
ECLIPSE

cse331-staff@cs.washington.edu

slides borrowed and adapted from Alex Mariakis and CSE 390a

mailto:cse331-staff@cs.washington.edu
mailto:cse331-staff@cs.washington.edu
mailto:cse331-staff@cs.washington.edu

OUTLINE
● Introductions
● Code Reasoning
● Version control
● IDEs – Eclipse
● Debugging

REASONING ABOUT
CODE

• Two purposes
• Prove our code is correct
• Understand why code is correct

• Forward reasoning: determine what follows from initial
conditions

• Backward reasoning: determine sufficient conditions to
obtain a certain result

FORWARD
REASONING

// {x >= 0, y >= 0}

y = 16;

//

x = x + y

//

x = sqrt(x)

//

y = y - x

//

FORWARD
REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

//

x = sqrt(x)

//

y = y - x

//

FORWARD
REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

//

y = y - x

//

FORWARD
REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

//

FORWARD
REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

// {x >= 4, y <= 12}

FORWARD
REASONING
// {true}

if (x>0) {

//

abs = x

//

}

else {

//

abs = -x

//

}

//

//

FORWARD
REASONING
// {true}

if (x>0) {

// {x > 0}

abs = x

//

}

else {

// {x <= 0}

abs = -x

//

}

//

//

FORWARD
REASONING
// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

//

//

FORWARD
REASONING
// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

//

FORWARD
REASONING
// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

// {abs = |x|}

BACKWARD
REASONING

//

a = x + b;

//

c = 2b - 4

//

x = a + c

// {x > 0}

BACKWARD
REASONING

//

a = x + b;

//

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

BACKWARD
REASONING

//

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

BACKWARD
REASONING

// {x + 3b - 4 > 0}

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

IMPLICATION
● Hoare triples are just an extension of

logical implication
○ Hoare triple: {P} S {Q}
○ P → Q after statement S

P Q P → Q
T T
T F
F T
F F

IMPLICATION
● Hoare triples are just an extension of

logical implication
○ Hoare triple: {P} S {Q}
○ P → Q after statement S

● Everything implies true
● False implies everything

P Q P → Q
T T T
T F F
F T T
F F T

WEAKER VS.
STRONGER

● If P1 → P2, then
○ P1 is stronger than P2
○ P2 is weaker than P1

● Weaker statements are more general, stronger
statements say more

● Stronger statements are more restrictive
○ Ex: x = 16 is stronger than x > 0
○ Ex: “Alex is an awesome TA” is stronger than “Alex is a

TA”

VERSION CONTROL

WHAT IS VERSION
CONTROL?
● Also known as source control/revision control
● System for tracking changes to code

○ Software for developing software
● Essential for managing projects

○ See a history of changes
○ Revert back to an older version
○ Merge changes from multiple sources

● We’ll be talking about Subversion, but there are
alternatives
○ Git, Mercurial, CVS
○ Email, Dropbox, USB sticks

VERSION CONTROL
ORGANIZATION

● A repository stores the
master copy of the project
○ Someone creates the repo for a new

project
○ Then nobody touches this copy directly
○ Lives on a server everyone can access

● Each person checks out her
own working copy
○ Makes a local copy of the repo
○ You’ll always work off of this copy
○ The version control system syncs the

repo and working copy (with your help)

svn

Working
copy

Working
copy

Repository

REPOSITORY
● Can create the repository anywhere

○ Can be on the same computer that you’re going to
work on, which might be ok for a personal project
where you just want rollback protection

● But, usually you want the repository to be robust:
○ On a computer that’s up and running 24/7

■ Everyone always has access to the project

○ On a computer that has a redundant file system
■ No more worries about that hard disk crash

wiping away your project!

● We’ll use attu! (attu.cs.washington.edu)

VERSION CONTROL
COMMON ACTIONS

Most common commands:
● Commit / checkin

○ integrate changes from your working
copy into the repository

● Update
○ integrate changes into your working

copy from the repository

Working
copy

Repository

svn

co
m

m
it

update

VERSION CONTROL
COMMON ACTIONS (CONT.)

More common commands:
● Add, delete

○ add or delete a file in the repository
○ just putting a new file in your working

copy does not add it to the repo!
● Revert

○ wipe out your local changes to a file
● Resolve, diff, merge

○ handle a conflict – two users editing the
same code

Working
copy

Repository

svn

co
m

m
it

update

VERSION CONTROL

Working
copy

Repository

svn

co
m

m
it

update

THIS QUARTER
• We distribute starter code by adding it to your

repo
• You will code in Eclipse
• You turn in your files by adding them to the repo

and committing your changes
• You will validate your homework by SSHing onto

attu and running an Ant build file

More on this next section!

ECLIPSE

WHAT IS ECLIPSE?
● Integrated development environment (IDE)

● Allows for software development from start to
finish
○ Type code with syntax highlighting, warnings, etc.
○ Run code straight through or with breakpoints (debug)
○ Break code

● Mainly used for Java
○ Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

● Alternatives
○ NetBeans, Visual Studio, IntelliJIDEA

ECLIPSE SHORTCUTS

Shortcut Purpose
Ctrl + D Delete an entire line
Alt + Shift + R Refactor (rename)
Ctrl + Shift + O Clean up imports
Ctrl + / Toggle comment
Ctrl + Shift + F Make my code look nice ☺

ECLIPSE DEBUGGING

● System.out.println() works for debugging…
○ It’s quick
○ It’s dirty
○ Everyone knows how to do it

● …but there are drawbacks
○ What if I’m printing something that’s null?
○ What if I want to look at something that can’t

easily be printed (e.g., what does my binary
search tree look like now)?

● Eclipse’s debugger is powerful…if you know
how to use it

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

•

•

•

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING

ECLIPSE DEBUGGING
● The debugger is awesome, but not perfect

○ Not well-suited for time-dependent code
○ Recursion can get messy

● Technically, we talked about a “breakpoint
debugger”
○ Allows you to stop execution and

examine variables
○ Useful for stepping through and

visualizing code
○ There are other approaches to

debugging that don’t involve a debugger

