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OUTLINE
● Introductions
● Code Reasoning
● Version control
● IDEs – Eclipse
● Debugging



REASONING ABOUT 
CODE

• Two purposes
• Prove our code is correct
• Understand why code is correct

• Forward reasoning: determine what follows from initial 
conditions

• Backward reasoning: determine sufficient conditions to 
obtain a certain result



FORWARD 
REASONING

// {x >= 0, y >= 0}

y = 16;

//

x = x + y

//

x = sqrt(x)

//

y = y - x

//
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// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y
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FORWARD 
REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

// {x >= 4, y <= 12}



FORWARD 
REASONING
// {true}

if (x>0) {

//

abs = x

//

}

else {

//

abs = -x

//

}

//

//
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FORWARD 
REASONING
// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

// {abs = |x|}



BACKWARD 
REASONING

//

a = x + b;

//

c = 2b - 4 

//

x = a + c

// {x > 0}
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//

a = x + b;

//

c = 2b - 4 

// {a + c > 0}

x = a + c

// {x > 0}



BACKWARD 
REASONING

//

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4 

// {a + c > 0}

x = a + c

// {x > 0}



BACKWARD 
REASONING

// {x + 3b - 4 > 0}

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4 

// {a + c > 0}

x = a + c

// {x > 0}



IMPLICATION
● Hoare triples are just an extension of 

logical implication
○ Hoare triple: {P} S {Q}
○ P → Q after statement S

P Q P → Q
T T
T F
F T
F F



IMPLICATION
● Hoare triples are just an extension of 

logical implication
○ Hoare triple: {P} S {Q}
○ P → Q after statement S

● Everything implies true
● False implies everything

P Q P → Q
T T T
T F F
F T T
F F T



WEAKER VS. 
STRONGER

● If P1 → P2, then
○ P1 is stronger than P2
○ P2 is weaker than P1

● Weaker statements are more general, stronger 
statements say more

● Stronger statements are more restrictive
○ Ex: x = 16 is stronger than x > 0
○ Ex: “Alex is an awesome TA” is stronger than “Alex is a 

TA”



VERSION CONTROL



WHAT IS VERSION 
CONTROL?
● Also known as source control/revision control
● System for tracking changes to code

○ Software for developing software
● Essential for managing projects

○ See a history of changes
○ Revert back to an older version
○ Merge changes from multiple sources

● We’ll be talking about Subversion, but there are 
alternatives
○ Git, Mercurial, CVS
○ Email, Dropbox, USB sticks



VERSION CONTROL 
ORGANIZATION

● A repository stores the 
master copy of the project
○ Someone creates the repo for a new 

project
○ Then nobody touches this copy directly
○ Lives on a server everyone can access

● Each person checks out her 
own working copy
○ Makes a local copy of the repo
○ You’ll always work off of this copy
○ The version control system syncs the 

repo and working copy (with your help)

svn

Working 
copy

Working 
copy

Repository



REPOSITORY
● Can create the repository anywhere

○ Can be on the same computer that you’re going to 
work on, which might be ok for a personal project 
where you just want rollback protection

● But, usually you want the repository to be robust:
○ On a computer that’s up and running 24/7

■ Everyone always has access to the project

○ On a computer that has a redundant file system
■ No more worries about that hard disk crash 

wiping away your project!

● We’ll use attu! (attu.cs.washington.edu)



VERSION CONTROL 
COMMON ACTIONS

Most common commands:
● Commit / checkin 

○ integrate changes from your working 
copy into the repository

● Update
○ integrate changes into your working 

copy from the repository

Working 
copy

Repository

svn

co
m

m
it

update



VERSION CONTROL 
COMMON ACTIONS (CONT.)

More common commands:
● Add, delete 

○ add or delete a file in the repository
○ just putting a new file in your working 

copy does not add it to the repo!
● Revert 

○ wipe out your local changes to a file
● Resolve, diff, merge 

○ handle a conflict – two users editing the 
same code

Working 
copy

Repository

svn

co
m

m
it

update



VERSION CONTROL

Working 
copy

Repository

svn

co
m

m
it

update



THIS QUARTER
• We distribute starter code by adding it to your 

repo
• You will code in Eclipse 
• You turn in your files by adding them to the repo 

and committing your changes
• You will validate your homework by SSHing onto 

attu and running an Ant build file

More on this next section!



ECLIPSE



WHAT IS ECLIPSE?
● Integrated development environment (IDE)

● Allows for software development from start to 
finish
○ Type code with syntax highlighting, warnings, etc.
○ Run code straight through or with breakpoints (debug)
○ Break code

● Mainly used for Java
○ Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

● Alternatives
○ NetBeans, Visual Studio, IntelliJIDEA



ECLIPSE SHORTCUTS

Shortcut Purpose
Ctrl + D Delete an entire line
Alt + Shift + R Refactor (rename)
Ctrl + Shift + O Clean up imports
Ctrl + / Toggle comment
Ctrl + Shift + F Make my code look nice ☺



ECLIPSE DEBUGGING

● System.out.println() works for debugging…
○ It’s quick
○ It’s dirty
○ Everyone knows how to do it

● …but there are drawbacks
○ What if I’m printing something that’s null?
○ What if I want to look at something that can’t 

easily be printed (e.g., what does my binary 
search tree look like now)?

● Eclipse’s debugger is powerful…if you know 
how to use it



ECLIPSE DEBUGGING
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•

•
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ECLIPSE DEBUGGING
● The debugger is awesome, but not perfect

○ Not well-suited for time-dependent code
○ Recursion can get messy

● Technically, we talked about a “breakpoint 
debugger”
○ Allows you to stop execution and 

examine variables
○ Useful for stepping through and 

visualizing code
○ There are other approaches to 

debugging that don’t involve a debugger


